首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1769篇
  免费   254篇
  国内免费   40篇
  2024年   3篇
  2023年   53篇
  2022年   59篇
  2021年   110篇
  2020年   116篇
  2019年   175篇
  2018年   90篇
  2017年   70篇
  2016年   72篇
  2015年   83篇
  2014年   102篇
  2013年   129篇
  2012年   97篇
  2011年   80篇
  2010年   54篇
  2009年   40篇
  2008年   58篇
  2007年   66篇
  2006年   58篇
  2005年   56篇
  2004年   44篇
  2003年   59篇
  2002年   28篇
  2001年   31篇
  2000年   26篇
  1999年   21篇
  1998年   38篇
  1997年   30篇
  1996年   39篇
  1995年   20篇
  1994年   15篇
  1993年   29篇
  1992年   16篇
  1991年   10篇
  1990年   5篇
  1989年   14篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1985年   7篇
  1984年   6篇
  1983年   8篇
  1982年   6篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1970年   2篇
排序方式: 共有2063条查询结果,搜索用时 15 毫秒
141.
142.
Mechanical loading of skeletal muscle results in molecular and phenotypic adaptations typified by enhanced muscle size. Studies on humans are limited by the need for repeated sampling, and studies on animals have methodological and ethical limitations. In this investigation, three-dimensional skeletal muscle was tissue-engineered utilizing the murine cell line C2C12, which bears resemblance to native tissue and benefits from the advantages of conventional in vitro experiments. The work aimed to determine if mechanical loading induced an anabolic hypertrophic response, akin to that described in vivo after mechanical loading in the form of resistance exercise. Specifically, we temporally investigated candidate gene expression and Akt-mechanistic target of rapamycin 1 signalling along with myotube growth and tissue function. Mechanical loading (construct length increase of 15%) significantly increased insulin-like growth factor-1 and MMP-2 messenger RNA expression 21 hr after overload, and the levels of the atrophic gene MAFbx were significantly downregulated 45 hr after mechanical overload. In addition, p70S6 kinase and 4EBP-1 phosphorylation were upregulated immediately after mechanical overload. Maximal contractile force was augmented 45 hr after load with a 265% increase in force, alongside significant hypertrophy of the myotubes within the engineered muscle. Overall, mechanical loading of tissue-engineered skeletal muscle induced hypertrophy and improved force production.  相似文献   
143.
Exercise training mitigates cardiac pathological remodeling and dysfunction caused by myocardial infarction (MI), but its underlying cellular and molecular mechanisms remain elusive. Our present study in an in vivo rat model of MI determined the impact of post-MI exercise training on myocardial fibrosis, mitochondrial biogenesis, antioxidant capacity, and ventricular function. Adult male rats were randomized into: (a) Sedentary control group; (b) 4-week treadmill exercise training group; (c) Sham surgery group; (d) MI group with permanent ligation of left anterior descending coronary artery and kept sedentary during post-MI period; and (e) post-MI 4-week exercise training group. Results indicated that exercise training significantly improved post-MI left ventricular function and reduced markers of cardiac fibrosis. Exercise training also significantly attenuated MI-induced mitochondrial damage and oxidative stress, which were associated with enhanced antioxidant enzyme expression and/or activity and total antioxidant capacity in the heart. Interestingly, the adaptive activation of the SIRT1/PGC-1α/PI3K/Akt signaling following MI was further enhanced by post-MI exercise training, which is likely responsible for exercise-induced cardioprotection and mitochondrial biogenesis. In conclusion, this study has provided novel evidence on the activation of SIRT1/PGC-1α/PI3K/Akt pathway, which may mediate exercise-induced cardioprotection through reduction of cardiac fibrosis and oxidative stress, as well as improvement of mitochondrial integrity and biogenesis in post-MI myocardium.  相似文献   
144.
Although cardiac hypertrophy is widely recognized as a risk factor that leads to cardiac dysfunction and, ultimately, heart failure, the complex mechanisms underlying cardiac hypertrophy remain incompletely characterized. The nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) is involved in the regulation of cardiac lipid metabolism. Here, we describe a novel PPARδ-dependent molecular cascade involving microRNA-29a (miR-29a) and atrial natriuretic factor (ANF), which is reactivated in cardiac hypertrophy. In addition, we identify a novel role of miR-29a, in which it has a cardioprotective function in isoproterenol hydrochloride-induced cardiac hypertrophy by targeting PPARδ and downregulating ANF. Finally, we provide evidence that miR-29a reduces the isoproterenol hydrochloride-induced cardiac hypertrophy response, thereby underlining the potential clinical relevance of miR-29a in which it may serve as a potent therapeutic target for heart hypertrophy treatment.  相似文献   
145.
[目的] 研究桑椹肥大性菌核病菌分生孢子的生物学特性,诱导菌丝产生分生孢子的方法及产生途径,为桑椹肥大性菌核病的防治提供依据。[方法] 显微镜下面观察病果形成不同阶段以及人工诱导产生的分生孢子形态特征;测定不同温度和湿度对菌丝产生分生孢子的影响;分别用病果和人工诱导产生的分生孢子悬浮液接种健康的桑椹,统计其发病率;以不同发病阶段的病椹在PDA、诱导培养基上产生的菌丝和菌核为材料,通过qPCR方法检测相关基因的表达水平,研究cAMP途径对于分生孢子形成的影响。[结果] C.shiraiana在温度为20℃-30℃,相对湿度为50%-80%条件下可以产生大量的分生孢子。人工诱导产生的分生孢子和病果中的分生孢子形态差异较大;病果中分生孢子悬浮液侵染健康的桑椹,其发病率为37%,而人工诱导产生的分生孢子对桑椹不具有侵染能力;分生孢子梗和分生孢子可在马铃薯片上被诱导产生;外源添加的cAMP影响菌丝的形态和分生孢子的形成,但不影响菌核的形成。AC含量在桑椹发病的第2阶段增长迅速,在发病的第3阶段和第4阶段迅速下降,PKA在发病的桑椹中始终没有表达。[结论] 桑椹肥大性菌核病病果可通过分生孢子造成再次侵染。分生孢子的形成对cAMP途径中的AC和PKA表达量起负调控作用。研究结果能够进一步增加我们对病原菌侵染桑果所需外界环境条件的理解,同时也进一步完善了C.shiraiana的侵染循环和分生孢子形成途径。  相似文献   
146.
147.
Acute kidney injury (AKI) is a high frequent and common complication following acute myocardial infarction (AMI). This study examined and identified the effect of AMI-induced AKI on organic anion transporter 1 (Oat1) and Oat3 transport using clinical setting of pre-renal AKI in vivo. Cardiac ischaemia (CI) and cardiac ischaemia and reperfusion (CIR) were induced in rats by 30-min left anterior descending coronary artery occlusion and 30-min occlusion followed by 120-min reperfusion, respectively. Renal hemodynamic parameters, mitochondrial function and Oat1/Oat3 expression and function were determined along with biochemical markers. Results showed that CI markedly reduced renal blood flow and pressure by approximately 40%, while these parameters were recovered during reperfusion. CI and CIR progressively attenuated renal function and induced oxidative stress by increasing plasma BUN, creatinine and malondialdehyde levels. Correspondingly, SOD, GPx, CAT mRNAs were decreased, while TNFα, IL1β, COX2, iNOS, NOX2, NOX4, and xanthine oxidase were increased. Mitochondrial dysfunction as indicated by increasing ROS, membrane depolarisation, swelling and caspase3 activation were shown. Early significant detection of AKI; KIM1, IL18, was found. All of which deteriorated para-aminohippurate transport by down-regulating Oat1 during sudden ischaemia. This consequent blunted the trafficking rate of Oat1/Oat3 transport via down-regulating PKCζ/Akt and up-regulating PKCα/NFκB during CI and CIR. Thus, this promising study indicates that CI and CIR abruptly impaired renal Oat1 and regulatory proteins of Oat1/Oat3, which supports dysregulation of remote sensing and signalling and inter-organ/organismal communication. Oat1, therefore, could potentially worsen AKI and might be a potential therapeutic target for early reversal of such injury.  相似文献   
148.
N-methyl-D-aspartate receptor (NMDAR) activity plays a key role in cerebral ischemia. Although NMDAR is also expressed in cardiomyocytes, little research has been performed on NMDAR activity in myocardial ischemia. Here, using an in vitro oxygen-glucose deprivation (OGD) cardiomyocyte model, we evaluated the effects of NMDAR activity upon calcium influx, viability, apoptosis, and investigated the roles of several key mitogen-activated protein kinases (MAPKs). Primary human neonatal cardiomyocytes were cultured under OGD conditions to mimic in vivo ischemic conditions. Enhancing NMDAR activity via NMDA significantly promoted calcium influx, decreased cell viability, increased apoptosis, and enhanced p38 MAPK phosphorylation in OGD cardiomyocytes (all P < 0.05). These effects were rescued by several calcium-channel blockers (ie, MK-801, La3+, Gap26 peptide, 18β-glycyrrhetinic acid) but most potently rescued via the NMDAR-specific antagonist MK-801 or removal of extracellular free calcium (all P < 0.05). Knocking-down p38 MAPK activity by small-molecule inhibition or genetic methods significantly increased cell viability and reduced apoptosis (all P < 0.05). Enhancing p38 MAPK activity abolished MK-801′s apoptosis-reducing effects in a p38 MAPK-dependent manner. In conclusion, NMDAR-driven calcium influx promotes apoptosis in ischemic human cardiomyocytes, an effect which can be attributed to enhanced p38 MAPK activity.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号