首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163396篇
  免费   10062篇
  国内免费   5937篇
  2023年   2075篇
  2022年   2810篇
  2021年   5352篇
  2020年   4572篇
  2019年   6137篇
  2018年   5170篇
  2017年   3844篇
  2016年   4358篇
  2015年   6535篇
  2014年   11490篇
  2013年   12799篇
  2012年   8700篇
  2011年   10731篇
  2010年   7869篇
  2009年   7986篇
  2008年   8386篇
  2007年   8574篇
  2006年   6923篇
  2005年   6142篇
  2004年   5176篇
  2003年   4317篇
  2002年   3837篇
  2001年   2546篇
  2000年   2171篇
  1999年   2221篇
  1998年   2026篇
  1997年   1676篇
  1996年   1644篇
  1995年   1666篇
  1994年   1583篇
  1993年   1371篇
  1992年   1325篇
  1991年   1223篇
  1990年   1016篇
  1989年   951篇
  1988年   875篇
  1987年   787篇
  1986年   683篇
  1985年   1104篇
  1984年   1563篇
  1983年   1109篇
  1982年   1319篇
  1981年   1204篇
  1980年   962篇
  1979年   908篇
  1978年   647篇
  1977年   600篇
  1976年   567篇
  1975年   417篇
  1973年   424篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
Whole cells of Chlorella vulgaris and Clostridium butyricum were co-immobilized in 2% agar gel. NADP was suitable as an electron carrier. The rate of hydrogen evolution increased with increasing NADP concentration. The optimum conditions for hydrogen evolution were pH 7.0 and 37°C. The immobilized C. vulgaris-NADP-immobilized Cl. butyricum system continuously evolved hydrogen at a rate of 0.29–1.34 μmol/h per mg Chl for 6 days. On the other hand, the system without NADP evolved only a trace amount of hydrogen.  相似文献   
202.
The sensitivity of the fluorescent dye, 3,3′-diethylthiadicarbocyanine (DiS-C2(5)), was too low for the detection of membrane potential changes in rat small intestinal membrane vesicles. Only after adding LaCl3 or after fractionation of the intestinal membranes by free-flow electrophoresis could the dye be used to monitor electrogenic Na+-dependent transport systems. It is concluded that the response of this potential-sensitive dye is influenced by the negative surface charge density of the vesicles.  相似文献   
203.
It is now possible to examine in detail exchanges between sister chromatids (SCEs) and to attempt to investigate the relationships of such exchanges to aberration formation and DNA-repair mechanisms. The frequency of SCEs is dramatically increased by chemical mutagens and may reflect the level of DNA damage. Lymphocytes from patients with ataxia telangiectasis (AT) show high levels of spontaneous chromosome damage and are hypersentive to ionising radiations and it was of interest to examine the levels of SCE induced in these cells by various mutagens. The frequencies of SCE after treatment with X=rays or three chemical mutagens were equivalent to those in normal cells. The effects of fluorodeoxyuridine and deoxycytidine on SCE frequencies were also tested.  相似文献   
204.
The effect of methyl bromide (MB) was tested on active and anhydrobiotic Aphelenchus avenae. A. avenae was induced into anhydrobiosis by three different techniques. Both active and anhydrobiotic nematodes were subjected to 3,000 μ1 MB/liter air for 14 periods from 0 to 82 h. Anhydrobiotic nematodes were more resistant to fumigation than active nematodes, regardless of the technique used to induce anhydrobiosis. The percent survival decreased with increasing MB exposures (μ1 MB × h). For an LD₉₅ of 45,000-54,000 μ1/1 × h were required for active nematodes and >279,000 μ1/1 × h for anhydrobiotic nematodes.  相似文献   
205.
206.
GPR35 is a rhodopsin-like G protein-coupled receptor identified in 1998. It has been reported that kynurenic acid, a tryptophan metabolite, may act as an endogenous ligand for GPR35. However, the concentrations of kynurenic acid required to elicit the cellular responses are usually high, raising the possibility that another endogenous ligand may exist. In this study, we searched for another endogenous ligand for GPR35. Finally, we found that the magnitude of the Ca2+ response induced by 2-acyl lysophosphatidic acid in the GPR35-expressing HEK293 cells was markedly greater than that in the vector-transfected control cells. Such a difference was not apparent in the case of 1-acyl lysophosphatidic acid. 2-Acyl lysophosphatidic acid also caused the sustained activation of RhoA and the phosphorylation of extracellular signal-regulated kinase, and triggered the internalization of the GPR35 molecule. These results strongly suggest that 2-acyl lysophosphatidic acid is an endogenous ligand for GPR35.  相似文献   
207.
Recently, circular RNAs (circRNAs) are identified as a novel class of noncoding RNAs playing important roles in human malignant tumors. However, the regulatory function of circRNA in lung adenocarcinoma (LUAD) is still largely unknown. Present study aimed to explore the role of circ_0006427 in LUAD progression. Firstly, the downregulation of circ_0006427 in LUAD tissues and cell lines was revealed by microarray analysis and qRT-PCR analysis. And we also confirmed the circ_0006427 as a prognostic target in LUAD patients. Functionally, overexpression of circ_0006427 effectively suppressed cell proliferation, migration and invasion. Mechanistically, circ_0006427 was found to be predominantly located in the cytoplasm of LUCA cell, and was further revealed to positively regulate DKK1 in LUAD by sponging miR-6783–3p. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis and western blot analysis revealed that circ_0006427 inactivated Wnt/β-catenin signaling pathway by upregulating DKK1. At last, rescue assays proved the function of circ_0006427/miR-6783–3p/DKK1 axis in LUAD progression. In conclusion, our study revealed that circ_0006427 suppressed lung adenocarcinoma progression through regulating miR-6783–3p/DKK1 axis.  相似文献   
208.
Takaharu Mizutani   《FEBS letters》1989,250(2):142-146
In order to clarify the mechanisms of selenocysteine incorporation into glutathione peroxidase, some evidence to show the in vitro conversion of phosphoseryl-tRNA to selenocysteyl-tRNA is reported. [3H]Phosphoseryl-tRNA was incubated in a reaction mixture composed of SeO2, glutathione and NADPH in the presence of selenium-transferase partially purified. Analyses of amino acids on the product tRNA showed that a part (4%) of [3H]phosphoseryl-tRNA was changed to [3H]selenocysteyl-tRNA. The conversion from seryl-tRNAsu or major seryl-tRNAIGA was not found. Selenium-transferase was essential for the conversion. [3H]Selenocysteine, liberated from the tRNA, was modified with iodoacetic acid. The product was confirmed to be carboxymethyl-selenocysteine by two-dimensional TLC. Selenocysteyl-tRNAsu should be used to synthesize glutathione peroxidase by co-translational mechanisms.  相似文献   
209.
  1. Download : Download high-res image (147KB)
  2. Download : Download full-size image
Highlights
  • •Sufficient tumor tissues are often unavailable large HLA peptidome discovery.
  • •Using patient derived xenograft (PDX) tumors can overcome this limitation.
  • •The large PDX HLA peptidomes expand significantly those of the original biopsies.
  • •The HLA peptidomes of the PDX tumors included many tumor antigens.
  相似文献   
210.
Corticosterone, the major stress hormone, plays an important role in regulating neuronal functions of the limbic system, although the cellular targets and molecular mechanisms of corticosteroid signaling are largely unknown. Here we show that a short treatment of corticosterone significantly increases α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission and AMPAR membrane trafficking in pyramidal neurons of prefrontal cortex, a key region involved in cognition and emotion. This enhancing effect of corticosterone is through a mechanism dependent on Rab4, the small GTPase-controlling receptor recycling between early endosome and plasma membrane. Guanosine nucleotide dissociation inhibitor (GDI), which regulates the cycle of Rab proteins between membrane and cytosol, forms an increased complex with Rab4 after corticosterone treatment. Corticosterone also triggers an increased GDI phosphorylation at Ser-213 by the serum- and glucocorticoid-inducible kinase (SGK). Moreover, AMPAR synaptic currents and surface expression and their regulation by corticosterone are altered by mutating Ser-213 on GDI. These results suggest that corticosterone, via SGK phosphorylation of GDI at Ser-213, increases the formation of GDI-Rab4 complex, facilitating the functional cycle of Rab4 and Rab4-mediated recycling of AMPARs to the synaptic membrane. It provides a potential mechanism underlying the role of corticosteroid stress hormone in up-regulating excitatory synaptic efficacy in cortical neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号