首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54838篇
  免费   17773篇
  国内免费   1993篇
  2024年   21篇
  2023年   215篇
  2022年   353篇
  2021年   867篇
  2020年   3129篇
  2019年   4727篇
  2018年   4935篇
  2017年   4827篇
  2016年   4533篇
  2015年   4489篇
  2014年   4696篇
  2013年   5080篇
  2012年   4305篇
  2011年   4639篇
  2010年   4019篇
  2009年   2948篇
  2008年   3139篇
  2007年   2576篇
  2006年   2512篇
  2005年   2142篇
  2004年   1781篇
  2003年   1856篇
  2002年   1520篇
  2001年   1185篇
  2000年   701篇
  1999年   522篇
  1998年   281篇
  1997年   232篇
  1996年   214篇
  1995年   227篇
  1994年   228篇
  1993年   204篇
  1992年   212篇
  1991年   136篇
  1990年   134篇
  1989年   116篇
  1988年   83篇
  1987年   92篇
  1986年   76篇
  1985年   94篇
  1984年   74篇
  1983年   64篇
  1982年   89篇
  1981年   47篇
  1980年   61篇
  1979年   57篇
  1978年   60篇
  1977年   23篇
  1976年   26篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
991.
In oxygenic photosynthetic organisms, excluding angiosperms, flavodiiron proteins (FDPs) catalyze light‐dependent reduction of O2 to H2O. This alleviates electron pressure on the photosynthetic apparatus and protects it from photodamage. In Synechocystis sp. PCC 6803, four FDP isoforms function as hetero‐oligomers of Flv1 and Flv3 and/or Flv2 and Flv4. An alternative electron transport pathway mediated by the NAD(P)H dehydrogenase‐like complex (NDH‐1) also contributes to redox hemostasis and the photoprotection of photosynthesis. Four NDH‐1 types have been characterized in cyanobacteria: NDH‐11 and NDH‐12, which function in respiration; and NDH‐13 and NDH‐14, which function in CO2 uptake. All four types are involved in cyclic electron transport. Along with single FDP mutants (?flv1 and Δflv3) and the double NDH‐1 mutants (?d1d2, which is deficient in NDH‐11,2 and ?d3d4, which is deficient in NDH‐13,4), we studied triple mutants lacking one of Flv1 or Flv3, and NDH‐11,2 or NDH‐13,4. We show that the presence of either Flv1/3 or NDH‐11,2, but not NDH‐13,4, is indispensable for survival during changes in growth conditions from high CO2/moderate light to low CO2/high light. Our results show functional redundancy between FDPs and NDH‐11,2 under the studied conditions. We suggest that ferredoxin probably functions as a primary electron donor to both Flv1/3 and NDH‐11,2, allowing their functions to be dynamically coordinated for efficient oxidation of photosystem I and for photoprotection under variable CO2 and light availability.  相似文献   
992.
Phosphorus (P) is an essential macronutrient required for plant development and production. The mechanisms regulating phosphate (Pi) uptake are well established, but the function of chloroplast Pi homeostasis is poorly understood in Oryza sativa (rice). PHT2;1 is one of the transporters/translocators mediating Pi import into chloroplasts. In this study, to gain insight into the role of OsPHT2;1‐mediated stroma Pi, we analyzed OsPHT2;1 function in Pi utilization and photoprotection. Our results showed that OsPHT2;1 was induced by Pi starvation and light exposure. Cell‐based assays showed that OsPHT2;1 localized to the chloroplast envelope and functioned as a low‐affinity Pi transporter. The ospht2;1 had reduced Pi accumulation, plant growth and photosynthetic rates. Metabolite profiling revealed that 52.6% of the decreased metabolites in ospht2;1 plants were flavonoids, which was further confirmed by 40% lower content of total flavonoids compared with the wild type. As a consequence, ospht2;1 plants were more sensitive to UV‐B irradiation. Moreover, the content of phenylalanine, the precursor of flavonoids, was also reduced, and was largely associated with the repressed expression of ADT1/MTR1. Furthermore, the ospht2;1 plants showed decreased grain yields at relatively high levels of UV‐B irradiance. In summary, OsPHT2;1 functions as a chloroplast‐localized low‐affinity Pi transporter that mediates UV tolerance and rice yields at different latitudes.  相似文献   
993.
Physcomitrella patens is a bryophyte model plant that is often used to study plant evolution and development. Its resources are of great importance for comparative genomics and evo‐devo approaches. However, expression data from Physcomitrella patens were so far generated using different gene annotation versions and three different platforms: CombiMatrix and NimbleGen expression microarrays and RNA sequencing. The currently available P. patens expression data are distributed across three tools with different visualization methods to access the data. Here, we introduce an interactive expression atlas, Physcomitrella Expression Atlas Tool (PEATmoss), that unifies publicly available expression data for P. patens and provides multiple visualization methods to query the data in a single web‐based tool. Moreover, PEATmoss includes 35 expression experiments not previously available in any other expression atlas. To facilitate gene expression queries across different gene annotation versions, and to access P. patens annotations and related resources, a lookup database and web tool linked to PEATmoss was implemented. PEATmoss can be accessed at https://peatmoss.online.uni-marburg.de  相似文献   
994.
995.
996.
Cryo‐electron microscopy (cryo‐EM) is a structural biological method that is used to determine the 3D structures of biomacromolecules. After years of development, cryo‐EM has made great achievements, which has led to a revolution in structural biology. In this article, the principle, characteristics, history, current situation, workflow, and common problems of cryo‐EM are systematically reviewed. In addition, the new development direction of cryo‐EM—cryo‐electron tomography (cryo‐ET), is discussed in detail. Also, cryo‐EM is prospected from the following aspects: the structural analysis of small proteins, the improvement of resolution and efficiency, and the relationship between cryo‐EM and drug development. This review is dedicated to giving readers a comprehensive understanding of the development and application of cryo‐EM, and to bringing them new insights.  相似文献   
997.
Tens of thousands of bacterial genome sequences are now known due to the development of rapid and inexpensive sequencing technologies. An important key in utilizing these vast amounts of data in a biologically meaningful way is to infer the function of the proteins encoded in the genomes via bioinformatics techniques. Whereas these approaches are absolutely critical to the annotation of gene function, there are still issues of misidentifications, which must be experimentally corrected. For example, many of the bacterial DNA sequences encoding sugar N‐formyltransferases have been annotated as l ‐methionyl‐tRNA transferases in the databases. These mistakes may be due in part to the fact that until recently the structures and functions of these enzymes were not well known. Herein we describe the misannotation of two genes, WP_088211966.1 and WP_096244125.1, from Shewanella spp. and Pseudomonas congelans, respectively. Although the proteins encoded by these genes were originally suggested to function as l ‐methionyl‐tRNA transferases, we demonstrate that they actually catalyze the conversion of dTDP‐4‐amino‐4,6‐dideoxy‐d ‐glucose to dTDP‐4‐formamido‐4,6‐dideoxy‐d ‐glucose utilizing N10‐formyltetrahydrofolate as the carbon source. For this analysis, the genes encoding these enzymes were cloned and the corresponding proteins purified. X‐ray structures of the two proteins were determined to high resolution and kinetic analyses were conducted. Both enzymes display classical Michaelis–Menten kinetics and adopt the characteristic three‐dimensional structural fold previously observed for other sugar N‐formyltransferases. The results presented herein will aid in the future annotation of these fascinating enzymes.  相似文献   
998.
Many gram‐positive bacteria produce bacillithiol to aid in the maintenance of redox homeostasis and degradation of toxic compounds, including the antibiotic fosfomycin. Bacillithiol is produced via a three‐enzyme pathway that includes the action of the zinc‐dependent deacetylase BshB. Previous studies identified conserved aspartate and histidine residues within the active site that are involved in metal binding and catalysis, but the enzymatic mechanism is not fully understood. Here we report two X‐ray crystallographic structures of BshB from Bacillus subtilis that provide insight into the BshB catalytic mechanism.  相似文献   
999.
Study of the congruence of population genetic structure between hosts and pathogens gives important insights into their shared phylogeographical and coevolutionary histories. We studied the population genetic structure of castrating anther‐smut fungi (genus Microbotryum) and of their host plants, the Silene nutans species complex, and the morphologically and genetically closely related Silene italica, which can be found in sympatry. Phylogeographical population genetic structure related to persistence in separate glacial refugia has been recently revealed in the S. nutans plant species complex across Western Europe, identifying several distinct lineages. We genotyped 171 associated plant–pathogen pairs of anther‐smut fungi and their host plant individuals using microsatellite markers and plant chloroplastic single nucleotide polymorphisms. We found clear differentiation between fungal populations parasitizing S. nutans and S. italica plants. The population genetic structure of fungal strains parasitizing the S. nutans plant species complex mirrored the host plant genetic structure, suggesting that the pathogen was isolated in glacial refugia together with its host and/or that it has specialized on the plant genetic lineages. Using random forest approximate Bayesian computation (ABC‐RF), we found that the divergence history of the fungal lineages on S. nutans was congruent with that previously inferred for the host plant and probably occurred with ancient but no recent gene flow. Genome sequences confirmed the genetic structure and the absence of recent gene flow between fungal genetic lineages. Our analyses of individual host–pathogen pairs contribute to a better understanding of co‐evolutionary histories between hosts and pathogens in natural ecosystems, in which such studies remain scarce.  相似文献   
1000.
The Envelope protein (E) is one of the four structural proteins encoded by the genome of SARS‐CoV and SARS‐CoV‐2 Coronaviruses. It is an integral membrane protein, highly expressed in the host cell, which is known to have an important role in Coronaviruses maturation, assembly and virulence. The E protein presents a PDZ‐binding motif at its C‐terminus. One of the key interactors of the E protein in the intracellular environment is the PDZ containing protein PALS1. This interaction is known to play a key role in the SARS‐CoV pathology and suspected to affect the integrity of the lung epithelia. In this paper we measured and compared the affinity of peptides mimicking the E protein from SARS‐CoV and SARS‐CoV‐2 for the PDZ domain of PALS1, through equilibrium and kinetic binding experiments. Our results support the hypothesis that the increased virulence of SARS‐CoV‐2 compared to SARS‐CoV may rely on the increased affinity of its Envelope protein for PALS1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号