全文获取类型
收费全文 | 93篇 |
免费 | 13篇 |
专业分类
106篇 |
出版年
2023年 | 4篇 |
2022年 | 4篇 |
2021年 | 11篇 |
2020年 | 2篇 |
2019年 | 7篇 |
2018年 | 5篇 |
2017年 | 2篇 |
2016年 | 5篇 |
2015年 | 5篇 |
2014年 | 4篇 |
2013年 | 7篇 |
2012年 | 4篇 |
2011年 | 3篇 |
2010年 | 4篇 |
2009年 | 2篇 |
2008年 | 2篇 |
2007年 | 3篇 |
2006年 | 2篇 |
2005年 | 2篇 |
2004年 | 4篇 |
2003年 | 1篇 |
2002年 | 2篇 |
2001年 | 3篇 |
2000年 | 4篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1982年 | 1篇 |
排序方式: 共有106条查询结果,搜索用时 0 毫秒
91.
92.
93.
Philipp Gunz Amanda K. Tilot Katharina Wittfeld Alexander Teumer Chin Yang Shapland Theo G.M. van Erp Michael Dannemann Benjamin Vernot Simon Neubauer Tulio Guadalupe Guillén Fernández Han G. Brunner Wolfgang Enard James Fallon Norbert Hosten Uwe Völker Antonio Profico Fabio Di Vincenzo Simon E. Fisher 《Current biology : CB》2019,29(1):120-127.e5
94.
Wei‐Qiang Gao Natasha Shinsky Gladys Ingle Klaus Beck Kathleen A. Elias Lyn Powell‐Braxton 《Developmental neurobiology》1999,39(1):142-152
Although insulin‐like growth factor‐I (IGF‐I) can act as a neurotrophic factor for peripheral neurons in vitro and in vivo following injury, the role IGF‐I plays during normal development and functioning of the peripheral nervous system is unclear. Here, we report that transgenic mice with reduced levels (two genotypes: heterozygous Igf1+/− or homozygous insertional mutant Igf1m/m) or totally lacking IGF‐I (homozygous Igf1−/−) show a decrease in motor and sensory nerve conduction velocities in vivo. In addition, A‐fiber responses in isolated peroneal nerves from Igf1+/− and Igf1−/− mice are impaired. The nerve function impairment is most profound in Igf1−/− mice. Histopathology of the peroneal nerves in Igf1−/− mice demonstrates a shift to smaller axonal diameters but maintains the same total number of myelinated fibers as Igf1+/+ mice. Comparisons of myelin thickness with axonal diameter indicate that there is no significant reduction in peripheral nerve myelination in IGF‐I–deficient mice. In addition, in Igf1m/m mice with very low serum levels of IGF‐I, replacement therapy with exogenous recombinant hIGF‐I restores both motor and sensory nerve conduction velocities. These findings demonstrate not only that IGF‐I serves an important role in the growth and development of the peripheral nervous system, but also that systemic IGF‐I treatment can enhance nerve function in IGF‐I–deficient adult mice. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 142–152, 1999 相似文献
95.
Songtao Xie Fan Lu Juntao Han Ke Tao Hongtao Wang Alfred Simental 《Cell cycle (Georgetown, Tex.)》2017,16(9):841-851
Schwann cells (SCs) are hitherto regarded as the most promising candidates for viable cell-based therapy to peripheral nervous system (PNS) injuries or degenerative diseases. However, the extreme drawbacks of transplanting autologous SCs for clinical applications still represent a significant bottleneck in neural regenerative medicine, mainly owing to the need of sacrificing a functional nerve to generate autologous SCs and the nature of slow expansion of the SCs. Thus, it is of great importance to establish an alternative cell system for the generation of sufficient SCs. Here, we demonstrated that adipose-derived stem cells (ADSCs) of rat robustly give rise to morphological, phenotypic and functional SCs using an optimized protocol. After undergoing a 3-week in vitro differentiation, almost all of treated ADSCs exhibited spindle shaped morphology similar to genuine SCs and expressed SC markers GFAP and S100. Most importantly, apart from acquisition of SC antigenic and biochemical features, the ADSC-derived SCs were functionally identical to native SCs as they possess a potential ability to form myelin, and secret nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glia-derived neurotrophic factor (GDNF). The current study may provide an ideal strategy for harvesting sufficient SCs for cell-based treatment of various peripheral nerve injuries or disorders. 相似文献
96.
97.
98.
99.
The lymphokine interleukin-2 (IL-2) promotes division and maturation of oligodendrocytes in culture (1). We now report that a IL-2-like activity was present in injured rat brain. The ion-exchange properties of this activity were similar to those of splenocyte IL-2 but its apparent molecular weight was higher. Brain IL-2-like activity was highest in the tissue immediately adjacent to the injury, reaching a maximal activity of about 8000 U/g tissue after 10 days postlesion. The mitogenic activity of injured-brain extracts on astrocytes and CTLL thymocytes was partially inhibited by monoclonal antibodies to murine IL-2 receptor. However, pure human IL-2 did not have mitogenic activity for cultured rat astrocytes. Purified astrocytes, alone or stimulated in a variety or ways, did not produce IL-2-like activity. 相似文献
100.