首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   30篇
  国内免费   3篇
  2023年   4篇
  2022年   8篇
  2021年   21篇
  2020年   9篇
  2019年   14篇
  2018年   11篇
  2017年   16篇
  2016年   14篇
  2015年   10篇
  2014年   22篇
  2013年   33篇
  2012年   20篇
  2011年   18篇
  2010年   26篇
  2009年   14篇
  2008年   13篇
  2007年   16篇
  2006年   18篇
  2005年   14篇
  2004年   17篇
  2003年   15篇
  2002年   22篇
  2001年   14篇
  2000年   12篇
  1999年   15篇
  1998年   11篇
  1997年   10篇
  1996年   15篇
  1995年   5篇
  1994年   19篇
  1993年   3篇
  1992年   9篇
  1991年   12篇
  1990年   13篇
  1989年   11篇
  1988年   12篇
  1987年   12篇
  1986年   7篇
  1985年   7篇
  1984年   7篇
  1983年   3篇
  1982年   11篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有577条查询结果,搜索用时 562 毫秒
51.
In this study, we have investigated the structure of the native myelin proteolipid protein (PLP), DM-20 protein and several low molecular mass proteolipids by mass spectrometry. The various proteolipid species were isolated from bovine spinal cord by size-exclusion and ion-exchange chromatography in organic solvents. Matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) of PLP and DM-20 revealed molecular masses of 31.6 and 27.2 kDa, respectively, which is consistent with the presence of six and four molecules of thioester-bound fatty acids. Electrospray ionization-MS analysis of the deacylated proteins in organic solvents produced the predicted molecular masses of the apoproteins (29.9 and 26.1 kDa), demonstrating that palmitoylation is the major post-translational modification of PLP, and that the majority of PLP and DM-20 molecules in the CNS are fully acylated. A series of myelin-associated, palmitoylated proteolipids with molecular masses raging between 12 kDa and 18 kDa were also isolated and subjected to amino acid analysis, fatty acid analysis, N- and C-terminal sequencing, tryptic digestion and peptide mapping by MALDI-TOF-MS. The results clearly showed that these polypeptides correspond to the N-terminal region (residues 1-105/112) and C-terminal region (residues 113/131-276) of the major PLP, and they appear to be produced by natural proteolytic cleavage within the 60 amino acid-long cytoplasmic domain. These proteolipids are not postmortem artifacts of PLP and DM-20, and are differentially distributed across the CNS.  相似文献   
52.
The interaction between neurons and glial cells that results in myelin formation represents one of the most remarkable intercellular events in development. This is especially evident at the primary functional site within this structure, the node of Ranvier. Recent experiments have revealed a surprising level of complexity within this zone, with several components, including ion channels, sequestered with a very high degree of precision and sharply demarcated borders. We discuss the current state of knowledge of the cellular and molecular mechanisms responsible for the formation and maintenance of the node. In normal axons, Na+ channels are present at high density within the nodal gap, and voltage-dependent K+ channels are sequestered on the internodal side of the paranode—a region known as the juxtaparanode. Modifying the expression of certain surface adhesion molecules that have been recently identified, markedly alters this pattern. There is a special emphasis on contactin, a protein with multiple roles in the nervous system. In central nervous system (CNS) myelinated fibers, contactin is localized within both the nodal gap and paranodes, and appears to have unique functions in each zone. New experiments on contactin-null mutant mice help to define these mechanisms.  相似文献   
53.
Although calpain has been extensively studied, its physiological function is poorly understood. In contrast, its role in the pathophysiology of various diseases has been implicated, including that of experimental allergic encephalomyelitis (EAE), an animal model of the demyelinating disease multiple sclerosis (MS). In EAE, calpain degrades myelin proteins, including myelin basic protein (MBP), suggesting a role for calpain in the breakdown of myelin in this disease. Subsequent studies revealed increased calpain activity and expression in the glial and inflammatory cells concomitant with loss of axon and myelin proteins. This suggested a crucial role for calpain in demyelinating diseases.  相似文献   
54.
This report investigated mechanisms responsible for failed Schwann cell myelination in mice that overexpress P(0) (P(0)(tg)), the major structural protein of PNS myelin. Quantitative ultrastructural immunocytochemistry established that P(0) protein was mistargeted to abaxonal, periaxonal, and mesaxon membranes in P(0)(tg) Schwann cells with arrested myelination. The extracellular leaflets of P(0)-containing mesaxon membranes were closely apposed with periodicities of compact myelin. The myelin-associated glycoprotein was appropriately sorted in the Golgi apparatus and targeted to periaxonal membranes. In adult mice, occasional Schwann cells myelinated axons possibly with the aid of endocytic removal of mistargeted P(0). These results indicate that P(0) gene multiplication causes P(0) mistargeting to mesaxon membranes, and through obligate P(0) homophilic adhesion, renders these dynamic membranes inert and halts myelination.  相似文献   
55.
We have investigated the influence of the neurotoxic Alzheimer's disease peptide amyloid-β (25-35) on the dynamics of phospholipid membranes by means of quasi-elastic neutron scattering in the picosecond time-scale. Samples of pure phospholipids (DMPC/DMPS) and samples with amyloid-β (25-35) peptide included have been compared. With two different orientations of the samples the directional dependence of the dynamics was probed. The sample temperature was varied between 290 K and 320 K to cover both the gel phase and the liquid-crystalline phase of the lipid membranes. The model for describing the dynamics combines a long-range translational diffusion of the lipid molecules and a spatially restricted diffusive motion. Amyloid-β (25-35) peptide affects significantly the ps-dynamics of oriented lipid membranes in different ways. It accelerates the lateral diffusion especially in the liquid-crystalline phase. This is very important for all kinds of protein-protein interactions which are enabled and strongly influenced by the lateral diffusion such as signal and energy transducing cascades. Amyloid-β (25-35) peptide also increases the local lipid mobility as probed by variations of the vibrational motions with a larger effect in the out-of-plane direction. Thus, the insertion of amyloid-β (25-35) peptide changes not only the structure of phospholipid membranes as previously demonstrated by us employing neutron diffraction (disordering effect on the mosaicity of the lipid bilayer system) but also the dynamics inside the membranes. The amyloid-β (25-35) peptide induced membrane alteration even at only 3 mol% might be involved in the pathology of Alzheimer's disease as well as be a clue in early diagnosis and therapy.  相似文献   
56.
The growing use of N-acetylaspartate as an indicator of neuronal viability has fostered interest in the biological function(s) of this unusual amino acid derivative. In considering the various physiological roles that have been proposed for this relatively abundant molecule one is obliged to take into account its unusual metabolic compartmentalization, according to which synthesis and storage occur in the neuron and hydrolytic cleavage in the oligodendrocyte. The latter reaction, catalyzed by aspartoacylase (ASPA), produces acetyl groups plus aspartate and has been proposed to occur in both soluble and membranous subfractions of white matter. Our study supports such bimodal occurrence and we now present immunoblot, proteomic, and biochemical evidence that the membrane-bound form of ASPA is intrinsic to purified myelin membranes. This was supported by a novel TLC-based method for the assay of ASPA. That observation, together with previous demonstrations of numerous lipid-synthesizing enzymes in myelin, suggests utilization of acetyl groups liberated by myelin-localized ASPA for lipid synthesis within the myelin sheath. Such synthesis might be selective and could explain the deficit of myelin lipids in animals lacking ASPA.  相似文献   
57.
Multipotent neural stem cells (NSCs) are competent for commitment to the oligodendrocyte (OL) lineage both in vitro and in vivo. We exploited this property to develop a rat neurospheres (NS)/oligospheres (OS)-based culture system to generate large numbers of highly enriched late OL progenitors (preOLs) and mature OLs (MatOLs). CNS neuroblastoma cell line B104-derived conditioned medium promoted the generation of nearly pure populations of preOLs from dissociated OS. The subsequent culture of preOLs with ciliary neurotrophic factor (CNTF) and 3,3',5'-triiodo-L-thyronine (T(3)) generated nearly pure populations of MatOLs. OL lineage specificity was confirmed by immunocytochemistry, quantitative RT-PCR and gene expression profiling, which demonstrated large differences between preOLs and MatOLs. The insulin-like growth factors (IGFs) are potent neuro-protective agents required for OL survival. We used this system to systematically define maturation-dependent changes in IGF signaling during the course of OL differentiation. The IGF-I and insulin receptors, insulin receptor substrate-1 (IRS-1) and IRS-2, protein kinase B (PKB)/Akt and Janus kinase (JNK) were expressed at higher levels in NS and preOLs compared with OS and MatOLs. Erk expression increased markedly from NS to OS, decreased only partially upon commitment to preOLs, and, in MatOLs, returned to a low level similar to NS. IGF activation of the generally proliferative Erk pathway was gradually acquired during NSC differentiation, whereas IGF activation of the generally pro-survival, anti-apoptotic PI3K/PKB pathway was consistently robust at each developmental stage.  相似文献   
58.
59.
Antibodies hydrolyzing myelin basic protein (MBP) can play an important role in the pathogenesis of multiple sclerosis (MS) and systemic lupus erythematosus (SLE). An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with SLE was used. Small pools of phage particles displaying light chains with different affinities for MBP were isolated by affinity chromatography on MBP‐Sepharose, and the fraction eluted with 0.5 M NaCl was used for preparation of individual monoclonal light chains (MLChs, 26–27 kDa). Seventy‐two of 440 individual colonies were randomly chosen, expressed in Escherichia coli in a soluble form, and MLChs were purified by metal chelating chromatography. Twenty‐two of 72 MLChs have high affinity and efficiently hydrolyze only MBP (not other control proteins) demonstrating various pH optima in a 5.7–9.0 range and different substrate specificity in the hydrolysis of four different MBP oligopeptides. Four MLChs demonstrated serine protease‐like and three thiol protease‐like activities, while 11 MLChs were metalloproteases. The activity of three MLChs was inhibited by both phenylmethylsulfonyl fluoride (PMSF) and Ethylenediaminetetraacetic acid (EDTA), two other by EDTA and iodoacetamide, and one by PMSF, EDTA, and iodoacetamide. The ratio of relative activity in the presence of Ca2+, Mg2+, Mn2+, Ni2+, Zn2+, Cu2+, and Co2+ was individual for each of 22 MLCh preparations. It is the first examples of human MLChs, which probably can possess two or even three different proteolytic activities. These observations suggest an extreme diversity of anti‐MBP abzymes in SLE patients. The immune systems of individual SLE patients can generate a variety of anti‐MBP abzymes, which can attack MBP of myelin‐proteolipid sheath of axons and play an important role in MS and SLE pathogenesis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号