首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15022篇
  免费   1059篇
  国内免费   750篇
  2024年   37篇
  2023年   183篇
  2022年   276篇
  2021年   411篇
  2020年   462篇
  2019年   609篇
  2018年   527篇
  2017年   375篇
  2016年   411篇
  2015年   486篇
  2014年   815篇
  2013年   946篇
  2012年   522篇
  2011年   690篇
  2010年   553篇
  2009年   634篇
  2008年   763篇
  2007年   719篇
  2006年   683篇
  2005年   613篇
  2004年   607篇
  2003年   540篇
  2002年   486篇
  2001年   349篇
  2000年   320篇
  1999年   328篇
  1998年   314篇
  1997年   324篇
  1996年   231篇
  1995年   234篇
  1994年   231篇
  1993年   192篇
  1992年   202篇
  1991年   170篇
  1990年   138篇
  1989年   153篇
  1988年   130篇
  1987年   113篇
  1986年   109篇
  1985年   112篇
  1984年   138篇
  1983年   81篇
  1982年   95篇
  1981年   96篇
  1980年   93篇
  1979年   77篇
  1978年   61篇
  1977年   52篇
  1976年   46篇
  1972年   21篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
991.
Neuregulins: functions,forms, and signaling strategies   总被引:35,自引:0,他引:35  
The neuregulins (NRGs) are cell-cell signaling proteins that are ligands for receptor tyrosine kinases of the ErbB family. The neuregulin family of genes has four members: NRG1, NRG2, NRG3, and NRG4. Relatively little is known about the biological functions of the NRG2, 3, and 4 proteins, and they are considered in this review only briefly. The NRG1 proteins play essential roles in the nervous system, heart, and breast. There is also evidence for involvement of NRG signaling in the development and function of several other organ systems, and in human disease, including the pathogenesis of schizophrenia and breast cancer. There are many NRG1 isoforms, raising the question "Why so many neuregulins?" Study of mice with targeted mutations ("knockout mice") has demonstrated that isoforms differing in their N-terminal region or in their epidermal growth factor (EGF)-like domain differ in their in vivo functions. These differences in function might arise because of differences in expression pattern or might reflect differences in intrinsic biological characteristics. While differences in expression pattern certainly contribute to the observed differences in in vivo functions, there are also marked differences in intrinsic characteristics that may tailor isoforms for specific signaling requirements, a theme that will be emphasized in this review.  相似文献   
992.
Colchicine, a known microtubule disrupting agent, produces a human myopathy, characterized by accumulation of lysosomes. We have created a reliable animal model of colchicine myopathy that replicates the subacute myopathy seen in humans, reproducing the chronic proximal weakness and vacuolar changes in nonnecrotic myofibers. If a microtubule network plays a role in lysosomal function in muscle, disturbance of it could alter degradation of intrinsic membrane receptors, presumably at some intracellular processing site or at exocytosis. Thus, we examined, as a possible cellular pathogenesis of colchicine myopathy, how the muscle cytoskeleton affects the degradation of membrane proteins, which are processed through the endosomal/lysosomal pathway. We used the acetylcholine receptor as a model membrane component in cultured myotubes allowed to preincubate with colchicine. We tested at which step colchicine interferes with receptor trafficking by accounting for internalization, delivery to lysosomes, hydrolysis, or exocytotic release of debris. We report that colchicine significantly decreases the exocytosis of AChRs but does not affect receptor internalization, lysosomal hydrolysis, or the number of surface membrane receptors. Further, our immunofluorescence observations revealed a morphologic tubulin network in rat skeletal muscle that is more densely distributed in white (mitochondria-poor) muscle fibers than in red (mitochondria-rich) fibers but is present in both. Ultrastructurally, immunogold labeling localized tubulin in the intermyofibrillar region in a long and linear fashion, unassociated with myofibers or mitochondria. Taken together, our findings suggest the following: (1) Microtubules likely play a functional role in the pathway of lysosomal degradation in normal adult skeletal muscle; (2) The observed decrease in overall apparent degradation of membrane receptors by colchicine must be due primarily to inhibition of exocytosis. These data indicate that lysosomal "constipation" underlies colchicine myopathy. (3) An animal model faithful to the human disorder will allow further pathogenetic studies.  相似文献   
993.
994.
995.
996.
It is well known that neonatal exposure to estrogen induces masculinization or defeminization of the brain. In this study, the effects of neonatal treatment with two kinds of soybean isoflavone aglycone, genistein (GS) and daidzein (DZ), on the estrous cycle and lordosis behavior were investigated. Female rats were injected subcutaneously with 1 mg GS, 1 mg DZ, 100 microg estradiol (E2), or oil daily for 5 days from birth. As a result, vaginal opening was advanced in GS- or E2-treated females. A vaginal smear check indicated that oil- or DZ-treated females showed a constant 4- or 5-day estrous cycle, whereas GS- or E2-treated rats showed a persistent or prolonged estrus. Ovariectomy was performed in all females at 60 days of age. The ovaries in the GS- or E2-treated groups were smaller than those in the oil- and DZ-treated groups and contained no corpora lutea. In the DZ group, although corpora lutea were seen, ovaries were smaller than that of control females. Behavioral tests were carried out after implantation of E2-tubes. All of the oil- or DZ-treated females showed lordosis with a high lordosis quotient (LQ). On the other hand, as male rats, LQs were extremely low in the E2-treated group, when compared to the oil-treated group. In the GS-treated group, the mean LQ was lower than that in the oil-treated group, but higher than those in the E2-treated female or male groups. These results suggest that genistein acts as an estrogen in the sexual differentiation of the brain and causes defeminization of the brain in regulating lordosis and the estrous cycle in rats. In addition, neonatal daidzein also has some influence on ovarian function.  相似文献   
997.
低氧对培养的不同内径的肺动脉平滑肌细胞增殖的影响   总被引:4,自引:0,他引:4  
目的和方法:分离培养三种不同内径的肺动脉平滑肌细胞(PASMCs),用^3H-TdR掺入速率和细胞计数作为细胞增殖的指标,观察低氧对其增殖作用的影响。结果:低氧对三种不同内径的PASMCs(内径分别为>1000μm、500-800μm、300-400μm)增殖促进作用显著不同,其^3H-TdR掺入速率和细胞计数分别增加23.5%和11.1%、60.0%和33.8%、141.4%和52.0%,选择对低氧最敏感的PASMCs(内径为300-400μm),进一步探讨低氧促PASMCs增殖作用的细胞机制:钙拮抗剂verapail、蛋白激酶C抑制剂staurosporine(Stau)和细胞Na-H交换抑制剂amiloride可显著降低低氧情况下PASMCs^3H-TdR掺入速率和细胞计数。结论:低氧对三种不同内径的PASMCs增殖促进作用显著不同; Ca^2 、蛋白激酶C和Na^2 -H^ 交换的激活,可能是低氧促PASMCs增殖的重要胞内信息转导机制。  相似文献   
998.
We have adapted a real space refinement protocol originally developed for high-resolution crystallographic analysis for use in fitting atomic models of actin filaments and myosin subfragment 1 (S1) to 3-D images of thin-sectioned, plastic-embedded whole muscle. The rationale for this effort is to obtain a refinement protocol that will optimize the fit of the model to the density obtained by electron microscopy and correct for poor geometry introduced during the manual fitting of a high-resolution atomic model into a lower resolution 3-D image. The starting atomic model consisted of a rigor acto-S1 model obtained by X-ray crystallography and helical reconstruction of electron micrographs. This model was rebuilt to fit 3-D images of rigor insect flight muscle at a resolution of 7 nm obtained by electron tomography and image averaging. Our highly constrained real space refinement resulted in modest improvements in the agreement of model and reconstruction but reduced the number of conflicting atomic contacts by 70% without loss of fit to the 3-D density. The methodology seems to be well suited to the derivation of stereochemically reasonable atomic models that are consistent with experimentally determined 3-D reconstructions computed from electron micrographs.  相似文献   
999.
Rat intestinal fibroblast lines (F1:G9 and A1:F1) differing in their potential to support intestinal mucosal development were marked with reporter genes to investigate their differentiation potential. The fibroblasts were transfected with plasmids expressing either beta-galactosidase (with or without a nuclear localisation signal) or green fluorescent protein (GFP). Transfection using Tfx50 or Fugene was more efficient than electroporation. The expression of beta-galactosidase was more stable and stronger than GFP. Cells were optimally labelled using the plasmid pL27B-GAL, and sub-clones with a strong and uniform nuclear expression of beta-galactosidase were isolated. These clones expressed beta-galactosidase even after prolonged passage in the absence of selection. The beta-galactosidase tagged lines (F1:G9gal and A1:F1gal) retained the morphological characteristics, viability and differentiation properties of the parental non-transfected lines. In co-culture with a colorectal tumour cell line Caco-2, the F1:G9gal and A1:F1gal cells differed in their morphological organisation but this did not change their expression of smooth muscle alpha-actin.  相似文献   
1000.
Molecular Evidence for the Existence of Two Species of Marteilia in Europe   总被引:1,自引:0,他引:1  
Marteilia refringens is one of the most significant pathogens of bivalve molluscs. Previous sequencing of the small subunit ribosomal RNA gene of M. refringens isolates derived from the infected mussels (Mytilus edulis and Mytilus galloprovinciallis) and the oyster (Ostrea edulis) in Europe did not reveal genetic polymorphisms despite indications from epizootiological data that distinct types may exist. We investigated the existence of polymorphisms in the internal transcribed spacer region of the ribosomal RNA genes. The sequences of this region proved to be clearly dimorphic among Marteilia from five sampling sites. The distribution of the two genetic types, named "O" and "M", appeared to be linked to the host species, oysters and mussels, respectively. We therefore support the recognition of two species of Marteilia in Europe and propose that the "O" type corresponds to M. refringens and the "M" type to M. maurini.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号