首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31980篇
  免费   2721篇
  国内免费   3708篇
  2024年   98篇
  2023年   694篇
  2022年   766篇
  2021年   1012篇
  2020年   1108篇
  2019年   1444篇
  2018年   1142篇
  2017年   1180篇
  2016年   1265篇
  2015年   1332篇
  2014年   1692篇
  2013年   2301篇
  2012年   1304篇
  2011年   1535篇
  2010年   1268篇
  2009年   1650篇
  2008年   1728篇
  2007年   1718篇
  2006年   1603篇
  2005年   1471篇
  2004年   1317篇
  2003年   1161篇
  2002年   1052篇
  2001年   837篇
  2000年   710篇
  1999年   767篇
  1998年   602篇
  1997年   559篇
  1996年   512篇
  1995年   515篇
  1994年   494篇
  1993年   380篇
  1992年   353篇
  1991年   342篇
  1990年   273篇
  1989年   252篇
  1988年   231篇
  1987年   214篇
  1986年   174篇
  1985年   201篇
  1984年   207篇
  1983年   142篇
  1982年   174篇
  1981年   121篇
  1980年   121篇
  1979年   107篇
  1978年   81篇
  1977年   46篇
  1976年   42篇
  1974年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Abstract: Phenylacetic acid, the major metabolite of phenylethylamine, has been identified and quantitated in rat brain regions by capillary column high-resolution gas chromatography mass spectrometry. Its distribution is heterogeneous and correlates with that of phenylethylamine. The values obtained were (ng/g ± SEM): whole brain, 31.2 ± 2.7; caudate nucleus, 64.6 ± 6.5; hypothalamus, 60.1 ± 7.4; cerebellum, 31.3 ± 2.9; brainstem, 33.1 ± 3.3, and the "rest," 27.6 ± 3.0.  相似文献   
52.
Aim  To develop a physiologically based model of the plant niche for use in species distribution modelling. Location  Europe. Methods  We link the Thornley transport resistance (TTR) model with functions which describe how the TTR’s model parameters are influenced by abiotic environmental factors. The TTR model considers how carbon and nutrient uptake, and the allocation of these assimilates, influence growth. We use indirect statistical methods to estimate the model parameters from a high resolution data set on tree distribution for 22 European tree species. Results  We infer, from distribution data and abiotic forcing data, the physiological niche dimensions of 22 European tree species. We found that the model fits were reasonable (AUC: 0.79–0.964). The projected distributions were characterized by a false positive rate of 0.19 and a false negative rate 0.12. The fitted models are used to generate projections of the environmental factors that limit the range boundaries of the study species. Main conclusions  We show that physiological models can be used to derive physiological niche dimensions from species distribution data. Future work should focus on including prior information on physiological rates into the parameter estimation process. Application of the TTR model to species distribution modelling suggests new avenues for establishing explicit links between distribution and physiology, and for generating hypotheses about how ecophysiological processes influence the distribution of plants.  相似文献   
53.
This study evaluated the gait stability, variability, and complexity of healthy young adults on inclined surfaces. A total of 49 individuals walked on a treadmill at their preferred speed for 4 min at inclinations of 6%, 8%, and 10% in upward (UP) and downward (DOWN) conditions, and in horizontal (0%) condition. Gait variability was assessed using average standard deviation trunk acceleration between strides (VAR), gait stability was assessed using margin of stability (MoS) and maximum Lyapunov exponent (λs), and gait complexity was assessed using sample entropy (SEn). Trunk variability (VAR) increased in the medial-lateral (ML), anterior-posterior, and vertical directions for all inclined conditions. The SEn values indicated that movement complexity decreased almost linearly from DOWN to UP conditions, reflecting changes in gait pattern with longer and slower steps as inclination increased. The DOWN conditions were associated with the highest variability and lowest stability in the MoS ML, but not in λs. Stability was lower in UP conditions, which exhibited the largest λs values. The overall results support the hypothesis that inclined surfaces decrease gait stability and alter gait variability, particularly in UP conditions.  相似文献   
54.

Objectives

The Levantine Middle Bronze Age (MBA, circa 2000–1500 BCE) marks a period of increased trade and regional interaction, spurred on by technological developments. In light of previous research exhibiting limited mobility in Sidon, further investigation was conducted using biodistance analysis to understand local population history and site development.

Materials and Methods

Dental nonmetric traits, a proxy for genetic information, were explored using ASUDAS on a sub-sample of primary inhumations (n = 35). The biodistance matrix was generated using Gower distance measures, and further tested using PERMDISP, PERMANOVA, Mantel test and hierarchical cluster analysis. The data was also contrasted to 87Sr/86Sr and δ18O as well as δ13C and δ15N values.

Results

There were no significant diachronic differences in isotopes values, and there was biological continuity (n = 35, Mantel test r = 0.11, p = 0.02, comparing local phases and biodistance). The analysis also suggested of a sub-group of individuals with biological proximity shared a more limited range of mobility and dietary habits.

Conclusions

The isotopes (87Sr/86Sr, δ18O, δ13C, δ15N) and biodistance analysis conducted on the Sidon College site skeletal assemblage exhibits stability and continuity of the people, despite the site's increasing role in the maritime network. This continuity may have been a key factor in Sidon's success, allowing it to accumulate wealth and resources for centuries to come.
  相似文献   
55.
1. Host plant phenotypic traits affect the structure of the associated consumer community and mediate species interactions. Intraspecific variation in host traits is well documented, although a functional understanding of variable traits that drive herbivore community response is lacking. We address this gap by modelling the trait-environment relationship using insect traits and host plant traits in a multilevel model. 2. We compare herbivore assemblages from the canopy of the phenotypically variable tree Metrosideros polymorpha on Hawai‘i Island. Multiple distinct varieties of M. polymorpha frequently co-occur, with variation in morphological traits. Using this system, we identify host and insect traits that underlie patterns of herbivore abundance and quantify the strength of host-insect trait interactions. 3. This work examines plant-insect interactions at a community scale, across 36 herbivore species in three orders. We find that co-occurring trees of varying phenotype support distinct communities. Leaf traits, including specific leaf area, trichome presence, and leaf nutrients, explain 46% of variation in insect communities. We find that feeding guild and nymphal life history are correlated with host plant traits, and we show that model predictions are improved by including the host and insect trait interaction. 4. This study demonstrates how insect herbivores traits influence community response to morphologically variable hosts. Environmental heterogeneity indirectly affected herbivore community structure via intraspecific variation in host plants, providing an important source of variation for maintaining diversity in the broader community.  相似文献   
56.
C3larvin toxin is a new member of the C3 class of the mono-ADP-ribosyltransferase toxin family. The C3 toxins are known to covalently modify small G-proteins, e.g. RhoA, impairing their function, and serving as virulence factors for an offending pathogen. A full-length X-ray structure of C3larvin (2.3 Å) revealed that the characteristic mixed α/β fold consists of a central β-core flanked by two helical regions. Topologically, the protein can be separated into N and C lobes, each formed by a β-sheet and an α-motif, and connected by exposed loops involved in the recognition, binding, and catalysis of the toxin/enzyme, i.e. the ADP-ribosylation turn–turn and phosphate–nicotinamide PN loops. Herein, we provide two new C3larvin X-ray structures and present a systematic study of the toxin dynamics by first analyzing the experimental variability of the X-ray data-set followed by contrasting those results with theoretical predictions based on Elastic Network Models (GNM and ANM). We identify residues that participate in the stability of the N-lobe, putative hinges at loop residues, and energy-favored deformation vectors compatible with conformational changes of the key loops and 3D-subdomains (N/C-lobes), among the X-ray structures. We analyze a larger ensemble of known C3bot1 conformations and conclude that the characteristic ‘crab-claw’ movement may be driven by the main intrinsic modes of motion. Finally, via computational simulations, we identify harmonic and anharmonic fluctuations that might define the C3larvin ‘native state.’ Implications for docking protocols are derived.  相似文献   
57.
58.
N-stable isotope analysis of macroalgae has become a popular method for the monitoring of nitrogen pollution in aquatic ecosystems. Basing on changes in their δ15N, macroalgae have been successfully used as biological traps to intercept nitrogen inputs. As different nitrogen sources differ in their isotopic signature, this technique provides useful information on the origin of pollutants and their extension in the water body. However, isotopic fractionation potentially resulting from microbial nitrogen processing, and indirect isotopic variations due to effects of physicochemical conditions on algal nutrient uptake and metabolism, may affect anthropogenic N isotopic values during transportation and assimilation. This in turn can affect the observed isotopic signature in the algal tissue, inducing isotopic variations not related to the origin of assimilated nitrogen, representing a “background noise” in isotope-based water pollution studies.In this study, we focused on three neighbouring coastal lakes (Caprolace, Fogliano and Sabaudia lakes) located south of Rome (Italy). Lakes were characterized by differences in terms of anthropogenic pressure (i.e. urbanization, cultivated crops, livestock grazing) and potential “background noise” levels (i.e. nutrient concentration, pH, microbial concentration). Our aim was to assess nitrogen isotopic variations in fragments of Ulva lactuca specimens after 48 h of submersion to identify and locate the origins of nitrogen pollutants affecting each lake. δ15N were obtained for replicated specimens of U. lactuca spatially distributed to cover the entire surface of each lake, previously collected from a benchmark, unpolluted site. In order to reduce the environmental background noise on isotopic observations, a Bayesian hierarchical model relating isotopic variation to environmental covariates and random spatial effects was used to describe and understand the distribution of isotopic signals in each lake.Our procedure (i) allowed to remove background noise and confounding effects from the observed isotopic signals; (ii) allowed to detect “hidden” pollution sources that would not be detected when not accounting for the confounding effect of environmental background noise; (iii) produced maps of the three lakes providing a clear representation of the isotopic signal variation even where background noise was high. Maps were useful to locate nitrogen pollution sources, identify the origin of the dissolved nitrogen and quantify the extent of pollutants, showing localized organic pollution impacting Sabaudia and Fogliano, but not Caprolace. This method provided a clear characterization of both intra- and inter-lake anthropogenic pressure gradients, representing a powerful approach to the ecological indication and nitrogen pollution management in complex systems, as transitional waterbodies are.  相似文献   
59.
Metabolism at the cytosol–mitochondria interface and its regulation is of major importance particularly for efficient production of biopharmaceuticals in Chinese hamster ovary (CHO) cells but also in many diseases. We used a novel systems-oriented approach combining dynamic metabolic flux analysis and determination of compartmental enzyme activities to obtain systems level information with functional, spatial and temporal resolution. Integrating these multiple levels of information, we were able to investigate the interaction of glycolysis and TCA cycle and its metabolic control. We characterized metabolic phases in CHO batch cultivation and assessed metabolic efficiency extending the concept of metabolic ratios. Comparing in situ enzyme activities including their compartmental localization with in vivo metabolic fluxes, we were able to identify limiting steps in glycolysis and TCA cycle. Our data point to a significant contribution of substrate channeling to glycolytic regulation. We show how glycolytic channeling heavily affects the availability of pyruvate for the mitochondria. Finally, we show that the activities of transaminases and anaplerotic enzymes are tailored to permit a balanced supply of pyruvate and oxaloacetate to the TCA cycle in the respective metabolic states. We demonstrate that knowledge about metabolic control can be gained by correlating in vivo metabolic flux dynamics with time and space resolved in situ enzyme activities.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号