首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10838篇
  免费   554篇
  国内免费   378篇
  11770篇
  2024年   30篇
  2023年   189篇
  2022年   160篇
  2021年   238篇
  2020年   278篇
  2019年   344篇
  2018年   315篇
  2017年   228篇
  2016年   272篇
  2015年   296篇
  2014年   349篇
  2013年   774篇
  2012年   277篇
  2011年   352篇
  2010年   342篇
  2009年   387篇
  2008年   426篇
  2007年   447篇
  2006年   396篇
  2005年   336篇
  2004年   334篇
  2003年   328篇
  2002年   305篇
  2001年   246篇
  2000年   213篇
  1999年   214篇
  1998年   212篇
  1997年   205篇
  1996年   188篇
  1995年   202篇
  1994年   204篇
  1993年   164篇
  1992年   165篇
  1991年   163篇
  1990年   146篇
  1989年   113篇
  1988年   140篇
  1987年   127篇
  1986年   101篇
  1985年   202篇
  1984年   217篇
  1983年   164篇
  1982年   250篇
  1981年   167篇
  1980年   160篇
  1979年   133篇
  1978年   77篇
  1977年   50篇
  1976年   58篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
 CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) is one of the four known nickel enzymes. It is a bifunctional protein that catalyzes the oxidation of CO to CO2 at a nickel iron-sulfur cluster (Cluster C) and a remarkable condensation reaction between a methyl group (donated from a methylated corrinoid iron-sulfur protein), carbon monoxide, and coenzyme A to form acetyl-CoA at a separate nickel iron-sulfur cluster (Cluster A). This review focuses on the current understanding of the structure and function of Cluster A and on related model chemistry. It describes studies that uncovered the first example of a biological organometallic reaction sequence. The mechanism of acetyl-CoA synthesis includes enzymebound methylnickel, iron-carbonyl, and acylmetal intermediates. Discovery of the methylnickel species constituted the first example of an alkylnickel species in biology and unveiled a new biological role for nickel. Received: 10 April 1996 / Accepted: 4 July 1996  相似文献   
102.
During conjugation, the micronucleus of Tetrahymena thermophila undergoes five consecutive nuclear divisions: meiosis, third prezygotic division (pregamic mitosis) and two postzygotic mitoses of the synkaryon. The four products of the synkaryon differentiate into macronuclear anlagen and new micronuclei and the old macronucleus is resorbed. The protein synthesis inhibitor cycloheximide, applied during conjugation, induced several developmental blocks. Pairs shifted to the drug during early meiotic prophase (stages I–III) were arrested at prophase. Cycloheximide applied to cells at pachytene (stages IV-VI) to metaphase arrested the conjugants at the stage of modified prometaphase/metaphase with overcondensed, swollen bivalents. In contrast to other systems, in the presence of cycloheximide, separation of chromatids, decondensation of chromosomes and exit from metaphase I were inhibited in both diploid and haploid cells. Pairs shifted to the drug after metaphase I were arrested at postmeiotic interphase after completing one nuclear cycle. The same rule applied to the subsequent cycle; then cells were arrested at the stage of pronuclei, and those pairs with functional pronuclei and synkarya were arrested at the stage of two products of the first postzygotic division (pronuclei were not arrested in nuclear transfer and karyogamy). Only pairs with two products of the first postzygotic division were arrested at the same stage after the cycloheximide treatment. Pairs shifted to cycloheximide during the second postzygotic division were arrested in development of macronuclear anlagen and resorption of old macronuclei. The postmeiotic conjugants pulse-treated with cycloheximide (2 h) yielded heterokaryons retaining parental macronuclei (i.e. they exhibited macronuclear retention).  相似文献   
103.
Solid-phase synthesis of peptides was carried out using only the volume of the solvent included in the swollen solid-phase resin beads [inclusion volume synthesis]. This approach enables (i) the use of higher concentrations of activated amino acids, resulting in increased coupling rates, (ii) drastically decreased consumption of solvents, and (iii) the construction of multiple peptide synthesizers having virtually no reaction vessels.  相似文献   
104.
105.
106.
Haury  J.  Bagliniére  J. -L.  Cassou  A. -I.  Maisse  G. 《Hydrobiologia》1995,300(1):269-277
Four compartments of a salmonid brook were studied in consecutive sections either at sector scale or at facies scale: physical features, water quality, macrophytes and salmonids. The most important factor in the spatial and temporal organisation was the longitudinal zonation assessed by the four compartments. It was mainly shown by a gradient of the length of the morphodynamic sequence and of the facies width, of the pH and the conductivity and of macrophyte cover. It induced a colonisation by older trout in the downstream part of the brook where growth was better and shelter given by the bankside vegetation was more abundant. There were also greater densities of other age-classes upstream, with a correlation between salmon and rock shelter. Furthermore, the second factor corresponded to the flow characteristics and a granulometry gradient. The third factor corresponded chiefly to lighting, salmon numbers and densities. Salmonids showed a temporal stability from spring to autumn,and an opposition between growth and density. Six clusters of sectors defined functional entities. With regard to the 3—dimensitnal structure of the brook, the special pattern of each compartment shows its contribution to the functioning of the whole. Taking into account the scale of the study, the coexistence between trout and salmon did not show a competition between the two species, but rather a spatial partition, thanks to thehheterogenity inside each sector. We concluded on the necessity of studying sympatry at the facies scale to assess the role of habitat factors as regulators of carrying capacity.  相似文献   
107.
Fungi appear to be unique in their requirement for a third soluble translation elongation factor. This factor, designated elongation factor 3 (EF-3), exhibits ribosome-dependent ATPase and GTPase activities that are not intrinsic to the fungal ribosome but are nevertheless essential for translation elongation in vivo. The EF-3 polypeptide has been identified in a wide range of fungal species and the gene encoding EF-3 (YEF3) has been isolated from four fungal species (Saccharomyces cerevisiae, Candida albicans, Candida guillermondii, andPneumocystis carinii). Computer-assisted analysis of the predictedS. cerevisiae EF-3 amino acid sequence was used to identify several potential functional domains; two ATP binding/catalytic domains conserved with equivalent domains in members of the ATP-Binding Cassette (ABC) family of proteins, an aminoterminal region showing significant similarity to theE. coli S5 ribosomal protein, and regions of predicted interaction with rRNA, tRNA, and mRNA. Furthermore, EF-3 was also found to display amino acid similarity to myosin proteins whose cellular function is to provide the motive force of muscle. The identification of these regions provides clues to both the evolution and function of EF-3. The predicted functional regions are conserved among all known fungal EF-3 proteins and a recently described homologue encoded by the Chlorella virus CVK2. We propose that EF-3 may play a role in the ribosomal optimization of the accuracy of fungal protein synthesis by altering the conformation and activity of a ribosomal accuracy center, which is equivalent to the S4-S5-S12 ribosomal protein accuracy center domain of theE. coli ribosome. Furthermore, we suggest that EF-3 represents an evolving ribosomal protein with properties analogous to the intrinsic ATPase activities of higher eukaryotic ribosomes, which has wider implications for the evolutionary divergence of fungi from other eukaryotes. Correspondence to: M.F. Tuite  相似文献   
108.
Explant loading experiments were conducted to investigate the effect of load duration on proteoglycan synthesis. A compressive load of 0.1 MPa applied for 10 min was found to stimulate proteoglycan synthesis, while the same load applied for 20 h suppressed synthesis. This bimodal response suggests that the cells are responding to different mechanical stimuli as time progresses. A theoretical model has therefore been developed to describe the mechanical environment perceived by cells within soft hydrated tissues (e.g. articular cartilage) while the tissue is being loaded. The cells are modeled, using the biphasic theory, as fluid-solid inclusions embedded in and attached to a biphasic extracellular matrix of distinct material properties. A method of solution is developed which is valid for any axisymmetric loading configuration, provided that the cell radius, a, is small relative to the tissue height, h (i.e. h/a 1). A closed-form analytical solution for this inclusion problem is then presented for the confined compression configuration. Results from this model show that the mechanical environment in and around the cells is time dependent and inhomogeneous, and can be significantly influenced by differences in properties between the cell and the extracellular matrix.  相似文献   
109.
Ultrastructure of the resorption of integumentary tissues (ligaments, muscles, fibrous tissue, nerves, and skeleton) and the synthesis of collagen is described for the first time in echinoderms. Resorption is cell-mediated. Phagocytic cells are characterized by Golgi-derived putative primary lysosomes. Numerous secondary lysosomes and residual bodies occur in the bodies and processes of phagocytic cells. They engulf whole muscle cells and nerve fibres, as well as collagen fibril segments that exceed 1.5 m in length. Skeletoclastic cells resemble vertebrate osteoclasts, showing a ruffled border, lysosomes, and numerous mitochondria. They surround trabeculae with thick processes to delimit a tubular resorption site. Collagen synthesis occurs in the space formerly occupied by resorbed tissues. Synthesis is performed by fibroblastic cells containing organelles typical of vertebrate fibroblasts, namely distended cisternae of rough endoplasmic reticulum, Golgi cisternae with distended edges, and procollagen granules. Procollagen granules are apparently exocytosed directly to the extracellular matrix. Evidence indicates that resorbing (phagocytic and skeletoclastic) cells and fibroblastic cells may belong to a common phagocyte lineage. These cells share the ability to form elaborate processes and to become syncytial, and their nuclei exhibit iron-containing crystals.This project was supported by Contract 2.4527.89 from the Fonds de la Recherche Fondamentale Collective (Belgium). P.D. is a Research Associate of the National Fund for Scientific Research (Belgium). Contribution of the Centre Interuniversitaire de Biologie Marine.  相似文献   
110.
The human multiple drug resistance (MDR) gene has been used as a model for human gene transfer which could lead to human gene therapy. MDR is a transmembrane protein which pumps a number of toxic substances out of cells including several drugs used in cancer chemotherapy. Normal bone marrow cells express low levels of MDR and are particularly sensitive to the toxic effects of these drugs. There are two general applications of MDR gene therapy: (1) to provide drug-resistance to the marrow of cancer patients receiving chemotherapy, and (2) as a selectable marker which when co-transferred with a non-selectable gene such as the human beta globin gene can be used to enrich the marrow for cells containing both genes. We demonstrate efficient transfer and expression of the human MDR gene in a retroviral vector into live mice and human marrow cells including CD34+ cells isolated from marrow and containing the bulk of human hematopoietic progenitors. MDR gene transduction corrects the sensitivity of CD34+ cells to taxol, an MDR drug substrate, and enriches the marrow for MDR-transduced cells. The MDR gene-containing retroviral supernatant used has been shown to be safe and free of replication-competent retrovirus. Because of the safety of the MDR retroviral supernatant, and efficient gene transfer into mouse and human marrow cells, a phase 1 clinical protocol for MDR gene transfer into cancer patients has been approved to evaluate MDR gene transfer and expression in human marrow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号