首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7419篇
  免费   520篇
  国内免费   376篇
  8315篇
  2024年   15篇
  2023年   133篇
  2022年   134篇
  2021年   205篇
  2020年   201篇
  2019年   246篇
  2018年   223篇
  2017年   167篇
  2016年   240篇
  2015年   263篇
  2014年   356篇
  2013年   433篇
  2012年   304篇
  2011年   271篇
  2010年   269篇
  2009年   324篇
  2008年   370篇
  2007年   374篇
  2006年   361篇
  2005年   337篇
  2004年   264篇
  2003年   272篇
  2002年   266篇
  2001年   238篇
  2000年   213篇
  1999年   202篇
  1998年   219篇
  1997年   206篇
  1996年   159篇
  1995年   132篇
  1994年   120篇
  1993年   108篇
  1992年   84篇
  1991年   72篇
  1990年   55篇
  1989年   42篇
  1988年   53篇
  1987年   50篇
  1986年   44篇
  1985年   48篇
  1984年   53篇
  1983年   24篇
  1982年   55篇
  1981年   33篇
  1980年   23篇
  1979年   19篇
  1978年   13篇
  1977年   7篇
  1976年   10篇
  1973年   2篇
排序方式: 共有8315条查询结果,搜索用时 15 毫秒
51.
RFLP-based genetic maps of wheat homoeologous group 7 chromosomes   总被引:23,自引:0,他引:23  
Summary Restriction fragment length polymorphism (RFLP) mapping was attempted using 18 cDNA clones, 14 anonymous and 4 of known function, which had been shown to have homologous DNA sequences on the group 7 chromosomes of wheat. The loci identified by these probes have been mapped on one or more chromosomes in this homoeologous group using linkage data derived from various F2, random inbred, doubled haploid and single chromosome recombinant populations. The maps also include three isozyme loci, five disease resistance loci, two anthocyanin pigment loci and a vernalisation response locus. The mapping data have been used to determine the extent of map co-linearity over the A, B and D genomes, the degree of RFLP variability in the three genomes and the relative efficiency of various restriction enzymes in detecting RFLPs in wheat. The strategy for future mapping in wheat, particularly the use of alien genomes or segments, such as that from Aegilops ventricosa used here, is discussed.  相似文献   
52.
In this article, shrinkage estimation method for multiple-marker analysis and for mapping multiple quantitative trait loci (QTL) was reviewed. For multiple-marker analysis, Xu (Genetics, 2003, 163:789-801) developed a Bayesian shrinkage estimation (BSE) method. The key to the success of this method is to allow each marker effect have its own variance parameter, which in turn has its own prior distribution so that the variance can be estimated from the data. Under this hierarchical model, a large number of markers can be handled although most of them may have negligible effects. Under epistatic genetic model, however, the running time is very long. To overcome this problem, a novel method of incorporating the idea described above into maximum likelihood, known as penalized likelihood method, was proposed. A simulated study showed that this method can handle a model with multiple effects, which are ten times larger than the sample size. For multiple QTL analysis, two modified versions for the BSE method were introduced: one is the fixed-interval method and another is the variable-interval method. The former deals with markers with intermediate density, and the latter can handle markers with extremely high density as well as model with epistatic effects. For the detection of epistatic effects, penalized likelihood method and the variable-interval approach of the BSE method are available.  相似文献   
53.
A QTL study of live animal and carcass traits in beef cattle was carried out in New Zealand and Australia. Back‐cross calves (385 heifers and 398 steers) were generated, with Jersey and Limousin backgrounds. This paper reports on weights of eight organs (heart, liver, lungs, kidneys, spleen, gastro‐intestinal tract, fat, and rumen contents) and 12 fat composition traits (fatty acid (FA) percentages, saturated and monounsaturated FA subtotals, and fat melting point). The New Zealand cattle were reared and finished on pasture, whilst Australian cattle were reared on grass and finished on grain for at least 180 days. For organ weights and fat composition traits, 10 and 12 significant QTL locations (P < 0.05), respectively, were detected on a genome‐wide basis, in combined‐sire or within‐sire analyses. Seven QTL significant for organ weights were found at the proximal end of chromosome 2. This chromosome carries a variant myostatin allele (F94L), segregating from the Limousin ancestry, and this is a positional candidate for the QTL. Ten significant QTL for fat composition were found on chromosomes 19 and 26. Fatty acid synthase and stearoyl‐CoA desaturase (SCD1), respectively, are positional candidate genes for these QTL. Two FA QTL found to be common to sire groups in both populations were for percentages of C14:0 and C14:1 (relative to all FAs) on chromosome 26, near the SCD1 candidate gene.  相似文献   
54.
Genetic linkage maps were constructed for loblolly pine (Pinus taeda L.) and radiata pine (P. radiata D. Don) using a common set of RFLP and microsatellite markers. The map for loblolly pine combined data from two full-sib families and consisted of 20 linkage groups covering 1281 cM. The map for radiata pine had 14 linkage groups and covered 1223 cM. All of the RFLP probes readily hybridise between loblolly and radiata pine often producing similar hybridisation patterns. There were in total 60 homologous RFLP loci mapped in both species which could be used for comparative purposes. A set of 20 microsatellite markers derived from radiata pine were also assayed; however, only 9 amplified and revealed polymorphic loci in both species. Single-locus RFLP and microsatellite markers were used to match up linkage groups and compare order between species. Twelve syntenic groups were obtained each consisting of from 3 to 9 homologous loci. The order of homologous loci was colinear in most cases, suggesting no major chromosomal rearrangements in the evolution of these species. Comparative mapping between loblolly and radiata pine should facilitate genetic research in both species and provide a framework for mapping in other pine species. Received: 25 November 1998 / /Accepted: 19 December 1998  相似文献   
55.
The acaricides clofentezine, hexythiazox and etoxazole are commonly referred to as ‘mite growth inhibitors’, and clofentezine and hexythiazox have been used successfully for the integrated control of plant mite pests for decades. Although they are still important today, their mode of action has remained elusive. Recently, a mutation in chitin synthase 1 (CHS1) was linked to etoxazole resistance. In this study, we identified and investigated a Tetranychus urticae strain (HexR) harboring recessive, monogenic resistance to each of hexythiazox, clofentezine, and etoxazole. To elucidate if there is a common genetic basis for the observed cross-resistance, we adapted a previously developed bulk segregant analysis method to map with high resolution a single, shared resistance locus for all three compounds. This finding indicates that the underlying molecular basis for resistance to all three compounds is identical. This locus is centered on the CHS1 gene, and as supported by additional genetic and biochemical studies, a non-synonymous variant (I1017F) in CHS1 associates with resistance to each of the tested acaricides in HexR. Our findings thus demonstrate a shared molecular mode of action for the chemically diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole as inhibitors of an essential, non-catalytic activity of CHS1. Given the previously documented cross-resistance between clofentezine, hexythiazox and the benzyolphenylurea (BPU) compounds flufenoxuron and cycloxuron, CHS1 should be also considered as a potential target-site of insecticidal BPUs.  相似文献   
56.
选用从大麦、小麦和水稻中分离的RFLP标记 ,构建了大麦半矮秆基因brh1精细图谱。以快中子处理六棱大麦品种Steptoe的种子 ,从M2 代中选择出brh1突变体FN5 3。brh1是一个极易鉴别的形态学标记 ,通过对FN5 3×Morex的F2 代群体进行鉴定表明 ,brh1基因为隐性 ,前人通过BSA法将其初步定位在大麦第 1染色体 (7H)短臂上 ,靠近端粒区。这一区间还有一个控制秆锈病抗性的显性基因Rpg1。所以 ,brh1的精细定位不仅对研究其本身具有重要意义 ,同时 ,也为Rpg1的图位克隆和功能研究提供了更大的重组配子群体。定位实验全部以F2 中具有brh1特征的个体为对象完成 ,鉴定工作在苗期进行。在该精细图上 ,brh1区间长15 .2cM ,各标记间的平均距离为 0 .8cM。其中 ,大麦的cDNA克隆MWG2 0 74B与brh1共分离。 2 0 74A在靠近着丝点一侧 ,与brh1相距 0 .8cM。BCD12 9和R3139在定位群体内呈现与MWG2 0 74A共分离。CDO5 4 5位于端粒一侧 ,距离brh1为 0 .8cM。根据禾谷类作物基因组的共线性原理 ,CDO5 4 5成功定位在水稻的同源染色体即第 6染色体短臂brh1区间内。然而 ,由于在定位亲本间缺乏多态性 ,BCD12 9和MWG2 0 74的 2条主带A和B均未能定位在水稻的共线性区段内。推测MWG2 0 74的其他各带可能被定位在水稻的目标区间内 ,从而有  相似文献   
57.
A previous study allowed the identification of two QTL regions at positions 11–34 cM (QTL1) and 68–76 cM (QTL2) on porcine chromosome SSC12 affecting several backfat fatty acids in an Iberian x Landrace F2 intercross. In the current study, different approaches were performed in order to better delimit the quoted QTL regions and analyze candidate genes. A new chromosome scan, using 81 SNPs selected from the Porcine 60KBeadChip and six previously genotyped microsatellites have refined the QTL positions. Three new functional candidate genes (ACOX1, ACLY, and SREBF1) have been characterized. Moreover, two putative promoters of porcine ACACA gene have also been investigated. New isoforms and 24 SNPs were detected in the four candidate genes, 19 of which were genotyped in the population. ACOX1 and ACLY SNPs failed to explain the effects of QTL1 on palmitic and gadoleic fatty acids. QTL2, affecting palmitoleic, stearic, and vaccenic fatty acids, maps close to the ACACA gene location. The most significant associations have been detected between one intronic (g.53840T > C) and one synonymous (c.5634T > C) ACACA SNPs and these fatty acids. Complementary analyses including ACACA gene expression quantification and association studies in other porcine genetic types do not support the expected causal effect of ACACA SNPs.  相似文献   
58.
Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate‐specific sequences containing tyrosine (~90 kinases) and those that phosphorylate either serine or threonine (~395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C‐lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide‐substrate binding to Src using paramagnetic‐relaxation‐enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C‐terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off‐target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity.  相似文献   
59.
Kernel size-related traits, including kernel length, kernel width, and kernel thickness, are critical components in determining yield and kernel quality in maize (Zea mays L.). Dissecting the phenotypic characteristics of these traits, and discovering the candidate chromosomal regions for these traits, are of potential importance for maize yield and quality improvement. In this study, a total of 139 F2:3 family lines derived from EHel and B73, a distinct line with extremely low ear height (EHel), was used for phenotyping and QTL mapping of three kernel size-related traits, including 10-kernel length (KL), 10-kernel width (KWid), and 10-kernel thickness (KT). The results showed that only one QTL for KWid, i.e., qKWid9 on Chr9, with a phenotypic variation explained (PVE) of 13.4% was detected between SNPs of AX-86298371 and AX-86298372, while no QTLs were detected for KL and KT across all 10 chromosomes. Four bulked groups of family lines, i.e., Groups I to IV, were constructed with F2:3 family lines according to the phenotypic comparisons of KWid between EHel and B73. Among these four groups, Group I possessed a significantly lower KWid than EHel (P =0.0455), Group II was similar to EHel (P =0.34), while both Group III and Group IV were statistically higher than EHel (P <0.05). Besides, except Group IV exhibited a similar KWid to B73 (P =0.11), KWid of Groups I to III were statistically lower than B73 (P <0.00). By comparing the bulked genotypes of the four groups to EHel and B73, a stable chromosomal region on Chr9 between SNPs of AX-86298372 to AX-86263154, entirely covered by qKWid9, was identified to link KWid with the positive allele of increasing phenotypic effect to KWid from B73, similar to that of qKWid9. A large amount of enzyme activity and macromolecule binding-related genes were annotated within this chromosomal region, suggesting qKWid9 as a potential QTL for KWid in maize.  相似文献   
60.
Multiple Sclerosis (MS) is a complex multifactorial autoimmune disease, whose sex- and age-adjusted prevalence in Sardinia (Italy) is among the highest worldwide. To date, 233 loci were associated with MS and almost 20% of risk heritability is attributable to common genetic variants, but many low-frequency and rare variants remain to be discovered. Here, we aimed to contribute to the understanding of the genetic basis of MS by investigating potentially functional rare variants. To this end, we analyzed thirteen multiplex Sardinian families with Immunochip genotyping data. For five families, Whole Exome Sequencing (WES) data were also available. Firstly, we performed a non-parametric Homozygosity Haplotype analysis for identifying the Region from Common Ancestor (RCA). Then, on these potential disease-linked RCA, we searched for the presence of rare variants shared by the affected individuals by analyzing WES data. We found: (i) a variant (43181034 T > G) in the splicing region on exon 27 of CUL9; (ii) a variant (50245517 A > C) in the splicing region on exon 16 of ATP9A; (iii) a non-synonymous variant (43223539 A > C), on exon 9 of TTBK1; (iv) a non-synonymous variant (42976917 A > C) on exon 9 of PPP2R5D; and v) a variant (109859349-109859354) in 3′UTR of MYO16.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号