首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3933篇
  免费   405篇
  国内免费   490篇
  4828篇
  2024年   35篇
  2023年   183篇
  2022年   196篇
  2021年   341篇
  2020年   248篇
  2019年   320篇
  2018年   214篇
  2017年   194篇
  2016年   171篇
  2015年   198篇
  2014年   279篇
  2013年   315篇
  2012年   178篇
  2011年   214篇
  2010年   174篇
  2009年   242篇
  2008年   252篇
  2007年   212篇
  2006年   157篇
  2005年   121篇
  2004年   112篇
  2003年   79篇
  2002年   67篇
  2001年   61篇
  2000年   24篇
  1999年   32篇
  1998年   38篇
  1997年   26篇
  1996年   18篇
  1995年   24篇
  1994年   21篇
  1993年   16篇
  1992年   17篇
  1991年   8篇
  1990年   7篇
  1988年   3篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有4828条查询结果,搜索用时 0 毫秒
61.
62.
63.
《IRBM》2021,42(5):345-352
Available clinical methods for heart failure (HF) diagnosis are expensive and require a high-level of experts intervention. Recently, various machine learning models have been developed for the prediction of HF where most of them have an issue of over-fitting. Over-fitting occurs when machine learning based predictive models show better performance on the training data yet demonstrate a poor performance on the testing data and the other way around. Developing a machine learning model which is able to produce generalization capabilities (such that the model exhibits better performance on both the training and the testing data sets) could overall minimize the prediction errors. Hence, such prediction models could potentially be helpful to cardiologists for the effective diagnose of HF. This paper proposes a two-stage decision support system to overcome the over-fitting issue and to optimize the generalization factor. The first stage uses a mutual information based statistical model while the second stage uses a neural network. We applied our approach to the HF subset of publicly available Cleveland heart disease database. Our experimental results show that the proposed decision support system has optimized the generalization capabilities and has reduced the mean percent error (MPE) to 8.8% which is significantly less than the recently published studies. In addition, our model exhibits a 93.33% accuracy rate which is higher than twenty eight recently developed HF risk prediction models that achieved accuracy in the range of 57.85% to 92.31%. We can hope that our decision support system will be helpful to cardiologists if deployed in clinical setup.  相似文献   
64.
Paik H  Kim J  Lee S  Heo HS  Hur CG  Lee D 《Molecules and cells》2012,33(4):351-361
The identification of true causal loci to unravel the statistical evidence of genotype-phenotype correlations and the biological relevance of selected single-nucleotide polymorphisms (SNPs) is a challenging issue in genome-wide association studies (GWAS). Here, we introduced a novel method for the prioritization of SNPs based on p-values from GWAS. The method uses functional evidence from populations, including phenotype-associated gene expressions. Based on the concept of genetic interactions, such as perturbation of gene expression by genetic variation, phenotype and gene expression related SNPs were prioritized by adjusting the p-values of SNPs. We applied our method to GWAS data related to drug-induced cytotoxicity. Then, we prioritized loci that potentially play a role in druginduced cytotoxicity. By generating an interaction model, our approach allowed us not only to identify causal loci, but also to find intermediate nodes that regulate the flow of information among causal loci, perturbed gene expression, and resulting phenotypic variation.  相似文献   
65.
Recent studies have shown that the protein interface sites between individual monomeric units in biological assemblies are enriched in disease‐associated non‐synonymous single nucleotide variants (nsSNVs). To elucidate the mechanistic underpinning of this observation, we investigated the conformational dynamic properties of protein interface sites through a site‐specific structural dynamic flexibility metric (dfi) for 333 multimeric protein assemblies. dfi measures the dynamic resilience of a single residue to perturbations that occurred in the rest of the protein structure and identifies sites contributing the most to functionally critical dynamics. Analysis of dfi profiles of over a thousand positions harboring variation revealed that amino acid residues at interfaces have lower average dfi (31%) than those present at non‐interfaces (50%), which means that protein interfaces have less dynamic flexibility. Interestingly, interface sites with disease‐associated nsSNVs have significantly lower average dfi (23%) as compared to those of neutral nsSNVs (42%), which directly relates structural dynamics to functional importance. We found that less conserved interface positions show much lower dfi for disease nsSNVs as compared to neutral nsSNVs. In this case, dfi is better as compared to the accessible surface area metric, which is based on the static protein structure. Overall, our proteome‐wide conformational dynamic analysis indicates that certain interface sites play a critical role in functionally related dynamics (i.e., those with low dfi values), therefore mutations at those sites are more likely to be associated with disease. Proteins 2015; 83:428–435. © 2014 Wiley Periodicals, Inc.  相似文献   
66.
郭慧  王兵  牛香 《生态学报》2015,35(20):6829-6837
森林生态系统定位观测研究站可为森林经营和生态效益评估提供基础数据。以湖北省为例,设计森林生态系统定位观测研究网络的指标体系,基于球状模型进行普通克里格插值,与GIS的空间叠置分析相耦合,生成湖北省生态地理区划和生态功能区划;建立森林生态站网络规划的有效分区,进行森林生态站站点布设,构建了湖北省森林生态系统定位观测研究网络;总结讨论了该网络的合理性和保障措施、与其它生态站网络的比较和网络规划的局限性。结果表明:该网络将湖北省划分成12个分区,共布设16个森林生态站,其中计划建设12个生态站,已经建设4个生态站;不仅可以监测湖北省81.8%的森林面积,88.9%的生态功能区面积,98.2%的重点生态功能区面积和87.5%的生物多样性保护优先区面积,而且9个森林生态站分布与湖北省4个重点生态功能区和3个生物多样性保护优先区相匹配。该网络可以实现森林生态系统生态要素的连续观测与清查,为森林生态服务功能和生态效益评估,以及重大生态工程提供数据支撑和辅助决策分析依据。  相似文献   
67.
《IRBM》2019,40(4):244-252
BackgroundMany head injury indices and finite element (FE) head models have been proposed to predict traumatic brain injury (TBI). Although FE head models are suitable methods with high accuracy, they are computationally intensive. Head motion-based brain injury criteria are usually fast tools with lower accuracy. So, the objective of this study is to propose new criteria along with an artificial neural network model to predict TBI risks, which can be fast and accurate.MethodsFor this purpose, 250 FE head simulations have been carried out at 5 magnitudes and 50 rotational impact directions using the SIMon model. The effects of directions and magnitudes of rotational impacts were assessed for cumulative strain damage measure (CSDM) values. Next, statistical analysis and neural network were applied to predict CSDM values.ResultsThe results of the present research showed that the direction of rotation in the sagittal and frontal planes had a considerable effect on the CSDM values. Furthermore, new brain injury indices and a radial basis function neural network have been proposed to predict CSDM values which having high correlation coefficients with SIMon responses.ConclusionsThe results of this research demonstrated that rotational impact directions should be used to develop new head injury criteria being able to predict CSDM values. However, findings of present research proved that head motion-based brain injury criteria and RBF network can be used to predict FE head model responses with high speed and accuracy.  相似文献   
68.
Kinship plays a fundamental role in the evolution of social systems and is considered a key driver of group living. To understand the role of kinship in the formation and maintenance of social bonds, accurate measures of genetic relatedness are critical. Genotype‐by‐sequencing technologies are rapidly advancing the accuracy and precision of genetic relatedness estimates for wild populations. The ability to assign kinship from genetic data varies depending on a species’ or population's mating system and pattern of dispersal, and empirical data from longitudinal studies are crucial to validate these methods. We use data from a long‐term behavioural study of a polygynandrous, bisexually philopatric marine mammal to measure accuracy and precision of parentage and genetic relatedness estimation against a known partial pedigree. We show that with moderate but obtainable sample sizes of approximately 4,235 SNPs and 272 individuals, highly accurate parentage assignments and genetic relatedness coefficients can be obtained. Additionally, we subsample our data to quantify how data availability affects relatedness estimation and kinship assignment. Lastly, we conduct a social network analysis to investigate the extent to which accuracy and precision of relatedness estimation improve statistical power to detect an effect of relatedness on social structure. Our results provide practical guidance for minimum sample sizes and sequencing depth for future studies, as well as thresholds for post hoc interpretation of previous analyses.  相似文献   
69.
Studying how habitat loss affects the tolerance of ecological networks to species extinction (i.e. their robustness) is key for our understanding of the influence of human activities on natural ecosystems. With networks typically occurring as local interaction networks interconnected in space (a meta-network), we may ask how the loss of specific habitat fragments affects the overall robustness of the meta-network. To address this question, for an empirical meta-network of plants, herbivores and natural enemies we simulated the removal of habitat fragments in increasing and decreasing order of area, age and connectivity for plant extinction and the secondary extinction of herbivores, natural enemies and their interactions. Meta-network robustness was characterized as the area under the curve of remnant species or interactions at the end of a fragment removal sequence. To pinpoint the effects of fragment area, age and connectivity, respectively, we compared the observed robustness for each removal scenario against that of a random sequence. The meta-network was more robust to the loss of old (i.e. long-fragmented), large, connected fragments than of young (i.e. recently fragmented), small, isolated fragments. Thus, young, small, isolated fragments may be particularly important to the conservation of species and interactions, while contrary to our expectations larger, more connected fragments contribute little to meta-network robustness. Our findings highlight the importance of young, small, isolated fragments as sources of species and interactions unique to the regional level. These effects may largely result from an unpaid extinction debt, whereby younger fragments are likely to lose species over time. Yet, there may also be more long-lasting effects from cultivated lands (e.g. water, fertilizers and restricted cattle grazing) and network complexity in small, isolated fragments. Such fragments may sustain important biological diversity in fragmented landscapes, but maintaining their conservation value may depend on adequate restoration strategies.  相似文献   
70.
An ambiguous figure such as the Necker cube causes spontaneous perceptual switching (SPS). The mechanism of SPS in multistable perception has not yet been determined. Although early psychological studies suggested that SPS may be caused by fatigue or satiation of orientation, the neural mechanism of SPS is still unknown. Functional magnetic resonance imaging (fMRI) has shown that the dorsal attention network (DAN), which mainly controls voluntary attention, is involved in bistable perception of the Necker cube. To determine whether neural dynamics along the DAN cause SPS, we performed simultaneous electroencephalography (EEG) and fMRI during an SPS task with the Necker cube, with every SPS reported by pressing a button. This EEG–fMRI integrated analysis showed that (a) 3–4 Hz spectral EEG power modulation at fronto-central, parietal, and centro-parietal electrode sites sequentially appeared from 750 to 350 ms prior to the button press; and (b) activations correlating with the EEG modulation traveled along the DAN from the frontal to the parietal regions. These findings suggest that slow oscillation initiates SPS through global dynamics along the attentional system such as the DAN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号