首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10126篇
  免费   653篇
  国内免费   677篇
  2024年   19篇
  2023年   163篇
  2022年   243篇
  2021年   266篇
  2020年   269篇
  2019年   324篇
  2018年   342篇
  2017年   266篇
  2016年   289篇
  2015年   285篇
  2014年   450篇
  2013年   643篇
  2012年   323篇
  2011年   449篇
  2010年   345篇
  2009年   431篇
  2008年   511篇
  2007年   516篇
  2006年   423篇
  2005年   415篇
  2004年   346篇
  2003年   306篇
  2002年   272篇
  2001年   217篇
  2000年   200篇
  1999年   212篇
  1998年   186篇
  1997年   197篇
  1996年   175篇
  1995年   157篇
  1994年   171篇
  1993年   143篇
  1992年   157篇
  1991年   145篇
  1990年   150篇
  1989年   123篇
  1988年   128篇
  1987年   97篇
  1986年   106篇
  1985年   146篇
  1984年   163篇
  1983年   126篇
  1982年   134篇
  1981年   107篇
  1980年   116篇
  1979年   75篇
  1978年   33篇
  1977年   28篇
  1976年   17篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
91.
在猫和家兔大脑半球一侧视区17/18交界处施加γ—氨基丁酸(GABA)、荷包牡丹碱和L—谷氨酸钠,以及用氯化钾和冷冻阻遏的方法,记录对侧和同侧皮层相应处图形视觉诱发电位(PVEP)的变化。讨论了GABA、荷包牡丹碱和L—谷氨酸钠对猫和兔的对侧和同侧PVEP的影响。  相似文献   
92.
电刺激乌拉坦麻醉的大鼠下丘脑外侧区(LH)可使缰核(Hb)内51.0%的单位兴奋,15.7%的单位抑制,其中发生兴奋反应的单位有15.4%可被逆行激活。双侧Hb内微量注射利多卡因,电刺激LH引起的升压反应可被阻断42.0±28.0%;反之,双侧LH内微量注射利多卡固,电刺激Hb引起的升压反应可被阻断62.0±26.4%。结果表明,LH与Hb在血压调节中相互依赖,具有协同作用。  相似文献   
93.
The fluorescence of the voltage sensitive dye, diS-C3-(5), has been analyzed by means of synchronous excitation spectroscopy. Using this rather rare fluorescence technique we have been able to distinguish between the slightly shifted spectra of diS-C3-(5) fluorescence from cells and from the supernatant. It has been found that diS-C3-(5) fluorescence in the supernatant can be selectively monitored at exc = 630 nm and em= 650 nm, while the cell associated fluorescence can be observed at exc= 690 nm and em = 710 nm. A modified theory for the diSC3-(5) fluorescence response to the membrane potential is presented, according to which a linear relationship exists between the logarithmic increment of the dye fluorescence intensity in the supernatant, In I/I°, and the underlying change in the plasma membrane potential, p=pp. The theory has been tested on human myeloid leukemia cells (line ML-1) in which membrane potential changes were induced by valinomycin clamping in various K+ gradients. It has been demonstrated that the membrane potential change, p,can be measured on an absolute scale. Offprint requests to: J. Plasek  相似文献   
94.
The energy status of mammalian cells is a finely regulated phenomenon. This is especially true in cardiac muscle cells in which energy requirements are high and the system must provide rapid turnover of the adenine nucleotides and instant response to changes in energetic demands. We have examined the acute response of the rat myocardium to ventricular pacing up to 2.5 times the resting heart rate. The purpose of this study was to determine at what level of pacing the normal energy status could be maintained and at what point it was compromised. Myocardial energy charge (EC = (ATP + 0.5 ADP)/(ATP + ADP + AMP)) was maintained at 1, 1.5 and 2 times the resting heart rate but declined significantly at 2.5 times. In contrast, phosphorylation potential (PP = ATP/ADP1 × Pi) was drastically altered in hearts paced at 1.5, 2 and 2.5 times the resting rate. Tissue lactate increased and glycogen decreased in a linear fashion as pacing rate increased, indicating that the metabolic challenge was proportional to the pacing rate. EC seems to reflect the overall status of the cell and its ability to maintain a dynamic equilibrium. PP may reflect the immediate and necessary driving force for mitochondrial respiration in times of increased demand. These data suggest that the myocardium may meet the increased energy demands of acute ventricular pacing by shifting the molar ratio of ATP to ADP times Pi in favour of driving phosphorylation.  相似文献   
95.
Glucose-limited, continuous cultures (dilution rate 0.1 h-1) of Streptococcus bovis JB1 fermented glucose at a rate of 3.9 mol mg protein-1 h-1 and produced acctate, formate and ethanol. Based on a maximum ATP yield of 32 cells/mol ATP (Stouthamer 1973) and 3 ATP/glucose, the theoretical glucose consumption for growth would have been 2.1 mol mg protein-1 h-1. Because the maintenance energy requirement was 1.7 mol/mg protein/h (Russell and Baldwin 1979), virtually all of the glucose consumption could be explained by growth and maintenance and the YATP was 30. Glucose-limited, continuous cultures produced heat at a rate of 0.29 mW/mg protein, and this value was similar to the enthalpy change of the fermentation (0.32 mW/mg protein). Batch cultures (specific growth rate 2.0 h-1) fermented glucose at a rate of 81 mol mg protein-1 h-1, and produced only lactate. The heat production was in close agreement with the theoretical enthalpy change (1.72 versus 1.70 mW/mg protein), but only 80% of the glucose consumption could be accounted by growth and maintenance. The YATP of the batch cultures was 25. Nitrogen-limited, glucose-excess, non-growing cultures fermented glucose at a rate of 6.9 mol mg protein-1 h-1, and virtually all of the enthalpy for this homolactic fermentation could be accounted as heat (0.17 mW/mg protein). The nitrogenlimited cultures had a membrane potential of 150 mV, and nearly all of the heat production could be explained by a futile cycle of protons through the cell membrane (watts = amperes x voltage where H+/ATP was 3). The membrane voltage of the nitrogen-limited cells was higher than the glucose-limited continuous cultures (150 versus 80 mV), and this difference in voltage explained why nitrogen-limited cultures consumed glucose faster than the maintenance rate. Batch cultures had a membrane potential of 100 mV, and this voltage could not account for increased glucose consumption (more than growth plus maintenance). It appears that another mechanism causes the increased heat production and lower growth efficiency of batch cultures.  相似文献   
96.
细胞外记录大鼠外侧臂旁核(LPBN)神经元单位放电,观察了刺激穹隆下器(SFO)在记录单位诱发的逆向反应和静脉注射新福林兴奋外周压力感受器和刺激孤束核(NTS)减压区诱发的顺向反应。实验发现:刺激 SFO,9.9%(15/151)的 LPBN 神经元有逆向反应。静脉注射新福林,40.7%(22/54)的 LPBN 神经元有抑制反应,27.8%(17/54)有兴奋反应。刺激 NTS,55.6%(94/169)的 LPBN 神经元呈现顺向兴奋反应;22.5%(38/169)呈现顺向抑制反应。观察静脉注射新福林对 SFO 刺激有逆向反应的 LPBN 神经元自发放电的影响,在两个受试单位均见抑制反应。观察刺激 NTS 对逆向反应单位自发放电的影响,在8个受试单位中,6个呈兴奋反应;2个呈抑制反应。以上结果表明:LPBN 接受来自 NTS 的兴奋性或抑制性压力感受性传入,并把这种信息经 LPBN-SFO 直接通路传输到 SFO。  相似文献   
97.
Restriction site and length variations of nrDNA were examined for 51 populations of seven species ofKrigia. The nrDNA repeat ranged in size from 8.7 to 9.6 kilobase (kb). The transcribed region, including the two ITSs, was 5.35 kb long in all examinedKrigia populations. In contrast, the size of the nontranscribed IGS varied from 3.35 to 4.25 kb. Eight different types of length-variations were identified among the 51 populations, including distinct nrDNA lengths in the tetraploid and diploid populations of bothK. biflora andK. virginica. However, a few variations were detected among populations of the same species or within a cytotype. All populations ofKrigia sect.Cymbia share a 600 bp insertion in IGS near the 18 S gene, and this feature suggests monophyly of the section. AllKrigia spp. had a conjugated type of subrepeat composed of approximately 75 basepairs (bp) and 125 bp. Base modifications in the gene coding regions were highly conserved among species. Forty-five restriction sites from 15 enzymes were mapped, 24 of which were variable among populations. Only four of the variable sites occurred in the rRNA coding region while 20 variable sites were detected in the noncoding regions. Collectively, 25 enzymes generated about 66 restriction sites in each nrDNA; this amounts to about 4.3% of the nrDNA repeat. A total of 50 restriction sites was variable, 28 of which were phylogenetically informative. Phylogenetic analyses of site mutations indicated that two sections ofKrigia, sect.Cymbia and sect.Krigia, are monophyletic. In addition, relationships among several species were congruent with other sources of data, such as cpDNA restriction site variation and morphology. Both length and restriction site variation supported an allopolyploid origin of the hexaploidK. montana. The average sequence divergence value inKrigia nrDNA was 40 times greater than that of the chloroplast DNA. The rapid evolution of nrDNA sequences was primarily due to changes of the IGS sequences.  相似文献   
98.
The effect of membrane potential on the activity of the ATP-dependent Ca2+ pump of isolated canine ventricular sarcolemmal vesicles were investigated. The membrane potential was controlled by the intravesicular and extravesicular concentration of K+, and the initial rates of Ca2+ uptake both in the presence and the absence of valinomycin were determined. The rate of Ca2+ uptake was stimulated by a inside-negative potential induced in the presence of valinomycin. The valinomycin-dependent stimulation was enhanced by the addition of K+ channel blocker, tetraethylammonium ion or Ba2+. The electrogenicity of cardiac sarcolemmal ATP-dependent Ca2+ pump is suggested from the increase of Ca2+ uptake by negative potential induced by valinomycin.  相似文献   
99.
The spectral and metabolic properties of Rhodamine 123, a fluorescent cationic dye used to label mitochondria in living cells, were investigated in suspensions of isolated rat-liver mitochondria. A red shift of Rhodamine 123 absorbance and fluorescence occurred following mitochondrial energization. Fluorescence quenching of as much as 75% also occurred. The red shift and quenching varied linearly with the potassium diffusion potential, but did not respond to ΔpH. These energy-linked changes were accompanied by dye uptake into the matrix space. Concentration ratios, in-to-out, approached 4000:1. A large fraction of internalized dye was bound. At concentrations higher than those needed to record these spectral changes, Rhodamine 123 inhibited ADP-stimulated (State 3) respiration of mitochondria (Ki = 12 μM) and ATPase activity of inverted inner membrane vesicles (Ki = 126 μM) and partially purified F1-ATPase (Ki = 177 μM). The smaller Ki for coupled mitochondria was accounted for by energy-dependent Rhodamine 123 uptake into the matrix. Above about 20 nmol/mg protein (10 μM), Rhodamine 123 caused rapid swelling of energized mitochondria. Effects on electron-transfer reactions and coupling were small or negligible even at the highest Rhodamine 123 concentrations employed. Δψ-dependent Rhodamine 123 uptake together with Rhodamine 123 binding account for the intense fluorescent staining of mitochondria in living cells. Inhibition of mitochondria ATPase likely accounts for the cytotoxicity of Rhodamine 123. At concentrations which do not inhibit mitochondrial function, Rhodamine 123 is a sensitive and specific probe of Δψ in isolated mitochondria.  相似文献   
100.
Summary The equilibrium binding mechanism and kinetics of binding of diS–C3-(5) (3,3-dipropylthiodicarbocyanine iodide) to rabbit renal brush-border membrane vesicles (BBMV) were examined using steady-state and time-resolved fluorescence, and fluorescence stopped-flow methods. In aqueous solution, diS–C3-(5) exists as a monomer at concentrations <5 m with fluorescence emission peak at 670 nm (excitation 622 nm), anisotropyr=0.102, and lifetime =1.2 nsec (23°C). Upon addition of increasing BBMV (voltage clamped to 0 mV using K+/valinomycin), the 670 nm emission peak decreases, corresponding to formation of a nonfluorescent membrane dimer, and subsequently a new emission peak at 695 nm increases, corresponding to membrane monomer. Dynamic depolarization studies show that aqueous diS–C3-(5) rotation is unhindered with a rotational rateR=0.57 nsec–1 while membrane monomer is hindered with steady-state anisotropyr=0.190, lifetime =2.1 nsec,R=0.58 nsec–1 and limiting anisotropyr =0.11. Based on equilibrium fluorescence titrations, the membrane monomer-dimer (M-D) dissociation constant,K d=[M]2/[D][BBMV], is 0.0013, where BBMV is expressed as membrane phospholipid concentration. Three distinct kinetic processes are identified by stopped-flow experiments in which BBMV are mixed with diS–C3-(5). There is rapid binding of diS–C3-(5) to the membrane to form bound monomer with a 6-msec exponential time constant. The membrane monomer at the membrane outer surface then aggregates to form bound dimer at the outer surface with a concentration independent time constant of 30 msec. The overall dimerization reaction probably consists of a rate-limiting reorientation process (30 msec) followed by a rapid dimerization which occurs on a nanosecond time scale. Finally, there is a 0.8 to 1 sec translocation of membrane dimer between symmetric sites at the inner and outer membrane surfaces. The translocation reaction is the step which is probably sensitive to changes in transmembrane electrical potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号