首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1469篇
  免费   81篇
  国内免费   35篇
  1585篇
  2024年   2篇
  2023年   39篇
  2022年   73篇
  2021年   77篇
  2020年   64篇
  2019年   40篇
  2018年   55篇
  2017年   44篇
  2016年   46篇
  2015年   52篇
  2014年   71篇
  2013年   134篇
  2012年   68篇
  2011年   61篇
  2010年   52篇
  2009年   58篇
  2008年   67篇
  2007年   52篇
  2006年   53篇
  2005年   54篇
  2004年   56篇
  2003年   42篇
  2002年   45篇
  2001年   41篇
  2000年   21篇
  1999年   21篇
  1998年   25篇
  1997年   25篇
  1996年   26篇
  1995年   11篇
  1994年   16篇
  1993年   15篇
  1992年   20篇
  1991年   6篇
  1990年   5篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   9篇
  1984年   4篇
  1983年   4篇
  1982年   7篇
  1981年   4篇
  1980年   1篇
  1977年   2篇
排序方式: 共有1585条查询结果,搜索用时 0 毫秒
71.
通过分子马达生物传感器技术建立一种特异、便捷、快速的食源性轮状病毒检测方法.以F0F1-ATPase为核心构建分子马达,以轮状病毒保守片段VP7设计各血清型通用探针,通过生物素-亲和素系统将探针与分子马达连接构建F0F1-ATPase分子马达检测装置.提取病毒RNA并将其与生物传感器结合的同时启动ATP合成,比较其荧光强度的差别,可以对样品中的RNA进行检测.此方法的病毒RNA检测灵敏度为0.005 ng/mL,对轮状病毒检测特异,与甲肝病毒、诺如病毒无交叉反应,在1h内即可完成检测.运用此方法随机检测15份样品,检测结果与RT-PCR一致.结果表明,分子马达生物传感器检测轮状病毒的方法灵敏、特异,可用于食源性轮状病毒的快速检测.  相似文献   
72.
Maternal smoking or use of other products containing nicotine during pregnancy can have significant adverse consequences for respiratory function in neonates. We have shown, in previous studies, that developmental nicotine exposure (DNE) in a model system compromises the normal function of respiratory circuits within the brainstem. The effects of DNE include alterations in the excitability and synaptic interactions of the hypoglossal motoneurons, which innervate muscles of the tongue. This study was undertaken to test the hypothesis that these functional consequences of DNE are accompanied by changes in the dendritic morphology of hypoglossal motoneurons. Hypoglossal motoneurons in brain stem slices were filled with neurobiotin during whole‐cell patch clamp recordings and subjected to histological processing to reveal dendrites. Morphometric analysis, including the Sholl method, revealed significant effects of DNE on dendritic branching patterns. In particular, whereas within the first five postnatal days there was significant growth of the higher‐order dendritic branches of motoneurons from control animals, the growth was compromised in motoneurons from neonates that were subjected to DNE. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1125–1137, 2016  相似文献   
73.
Development of tolerance to motor-impairing effects of repeated administration of moderate diazepam doses (5.0–7.5 mg/kg; three times daily PO 3 weeks) was compared between mice deficient in the cerebellar granule cell–restricted GABAA receptor 6 subunit and their wild-type controls. The 6–/– mice were more impaired by the initial challenge doses of diazepam (5 or 10 mg/kg) than their controls, but acquired partial tolerance by the second tests with the same doses 4–7 days later. Chronic treatment produced complete tolerance in both mouse lines. Ligand autoradiography revealed a significant reduction in baseline benzodiazepine and chloride channel site-bindings in various regions of the 6–/– brains, but the chronic diazepam treatment did not consistently alter baseline or benzodiazepine site agonist and inverse agonist-modulated binding in the 6–/– and wildtype mice. The results indicate that tolerance to motor-impairing actions of diazepam is independent of the diazepam-insensitive 6 subunit-containing receptors, which rules out the possibility that tolerance emerges as an increase in structurally benzodiazepine-insensitive receptor population.  相似文献   
74.
Mutations in the superoxide dismutase 1 (SOD1) gene cause the degeneration of motor neurons in familial amyotrophic lateral sclerosis (FALS). An apoptotic process including caspase-1 and -3 has been shown to participate in the pathogenesis of FALS transgenic (Tg) mouse model. Here we report that IAP proteins, potent inhibitors of apoptosis, are involved in the FALS Tg mouse pathologic process. The levels of X-linked inhibitor of apoptosis protein (XIAP) mRNA and protein were significantly decreased in the spinal cord of symptomatic G93A-SOD1 Tg mice compared with littermates. In contrast, the levels of cIAP-1 mRNA and protein were increased in symptomatic G93A-SOD1 Tg mice, whereas the levels of cIAP-2 mRNA and protein were unchanged. In situ hybridization showed that the expression of XIAP was remarkably reduced in the motor neurons of Tg mice, and the expression of cIAP-1 was strongly increased in the reactive astrocytes of Tg mice. Overexpression of XIAP markedly inhibited the cell death and caspase-3 activity in the neuro2a cells expressing mutant SOD1. Deletional mutant analysis revealed that the N-terminal domain of XIAP, the BIR1-2 domains, was essential for this inhibitory activity. These results suggest that XIAP plays a role in the apoptotic mechanism in the progression of disease in mutant SOD1 Tg mice and holds therapeutic possibilities for FALS.  相似文献   
75.
In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth‐promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain‐derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin‐1 (CT‐1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line‐derived neurotrophic factor (GDNF) and neurotrophin‐3 (NT‐3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth‐promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 101–114, 2002  相似文献   
76.
郭虹 《微生物学通报》2020,47(8):2610-2618
动物微生物学是高职院校畜牧兽医专业的一门重要基础课,理论性、技术性、实践性很强,其教学效果对学生后续专业的学习、实践技能的掌握有重要影响。本文从课程教学必须适应培养现代专业技术人才的要求出发,探讨了对"动物微生物学"课程教学进行改革与实践的必要性,提出要通过对教学课时的调整、授课内容的优化、教学方式的创新以及多媒体、翻转课堂、理论与实践一体化(以下简称理实一体化)等多种教学手段的综合使用,构建以职业技能为导向的"动物微生物学"课程高效课堂,努力找出一条培养具有相当的专业理论知识、一定的实践操作技能和较高的职业素养的应用型、复合型专业人才的现实途径。  相似文献   
77.
Alzheimer's disease (AD) is a neurodegenerative disorder that leads to age‐related cognitive and sensori‐motor dysfunction. There is an increased understanding that motor dysfunction contributes to overall AD severity, and a need to ameliorate these impairments. The 5xFAD mouse develops the neuropathology, cognitive and motor impairments observed in AD, and thus may be a valuable animal model to study motor deficits in AD. Therefore, we assessed age‐related changes in motor ability of male and female 5xFAD mice from 3 to 16 months of age, using a battery of behavioral tests. At 9‐10 months, 5xFAD mice showed reduced body weight, reduced rearing in the open‐field and impaired performance on the rotarod compared to wild‐type controls. At 12‐13 months, 5xFAD mice showed reduced locomotor activity on the open‐field, and impaired balance on the balance beam. At 15‐16 months, impairments were also seen in grip strength. Although sex differences were observed at specific ages, the development of motor dysfunction was similar in male and female mice. Given the 5xFAD mouse is commonly on a C57BL/6 × SJL hybrid background, a subset of mice may be homozygous recessive for the Dysf im mutant allele, which leads to muscular weakness in SJL mice and may exacerbate motor dysfunction. We found small effects of Dysf im on motor function, suggesting that Dysf im contributes little to motor dysfunction in 5xFAD mice. We conclude that the 5xFAD mouse may be a useful model to study mechanisms that produce motor dysfunction in AD, and to assess the efficacy of therapeutics on ameliorating motor impairment.  相似文献   
78.
电刺激杏仁复合体能诱发心律失常。心律失常的类型为心动过缓伴室性或结性期外收缩。刺激杏仁复合体不同亚核均能诱发心律失常,不同类型的心律失常在核内具有相应的代表点。心律失常发作与杏仁局部区域诱发的爆发性后放电有关。推测杏仁复合体内神经元过度激活可能通过杏仁-迷走神经运动背核及杏仁-下丘脑外侧区等通路下行,使心率减慢、房室传导阻滞而导致心律失常。  相似文献   
79.
80.
Although napping is commonly used as a strategy to improve numerous physical and cognitive performances, the efficacy of this strategy for improving postural balance has not yet been elucidated. Thus, the aim of this study was to conduct a comprehensive examination of the effect of a 60 min nap opportunity (N60) on different components of postural control. Ten highly active individuals (age = 27 ± 3.5 y, height = 1.75 ± 0.52 m, weight = 66.02 ± 8.63 kg) performed, in a randomized order, two afternoon test sessions following no nap (NN) and N60. Postural balance was assessed using the sensory organisation test (SOT), the unilateral stance test (UST), and the limits of Stability Test performed on NeuroCom® Smart Balance Master. The subjective rating of sleepiness before and after the nap conditions was also assessed. Compared to NN, N60 improved the composite balance score (p < 0.05, ES = 0.75, Δ = 5.3%) and the average and maximum percentage balance in the most challenging postural conditions of the SOT (p < 0.05 for SOT-4 and 5 and p < 0.0005 for SOT-6; ES range between 0.58 and 1.1). This enhanced postural balance in N60 was accompanied with improved visual (p < 0.05; ES = 0.93; Δ = 8.9%) and vestibular (p < 0.05; ES = 0.81; Δ = 10.5%) ratios and a reduced level of sleepiness perception (p < 0.001, ES = 0.87). However, no significant differences were found in any of the UST and LOS components’ scores (p > 0.05). Overall, a 60 min post lunch nap opportunity may be viable for improving static balance, although further work, involving larger samples and more complex motor activities, is warranted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号