首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4055篇
  免费   211篇
  国内免费   94篇
  2024年   4篇
  2023年   41篇
  2022年   93篇
  2021年   103篇
  2020年   95篇
  2019年   140篇
  2018年   138篇
  2017年   88篇
  2016年   102篇
  2015年   138篇
  2014年   191篇
  2013年   310篇
  2012年   177篇
  2011年   232篇
  2010年   138篇
  2009年   189篇
  2008年   212篇
  2007年   233篇
  2006年   216篇
  2005年   204篇
  2004年   184篇
  2003年   149篇
  2002年   139篇
  2001年   106篇
  2000年   91篇
  1999年   134篇
  1998年   67篇
  1997年   69篇
  1996年   62篇
  1995年   55篇
  1994年   54篇
  1993年   39篇
  1992年   38篇
  1991年   21篇
  1990年   10篇
  1989年   11篇
  1988年   11篇
  1987年   6篇
  1986年   7篇
  1985年   13篇
  1984年   6篇
  1983年   5篇
  1982年   10篇
  1981年   8篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
排序方式: 共有4360条查询结果,搜索用时 615 毫秒
81.
《Free radical research》2013,47(5):620-637
Abstract

The present study investigated the antioxidant signalling mechanism of a coumarin-derived schiff base (CSB) scaffold against tert-butylhydroperoxide (TBHP) induced oxidative insult in murine hepatocytes. CSB possesses DPPH and other free radical scavenging activities. TBHP reduced cell viability and intracellular antioxidant status accompanied by an increase in intracellular ROS production in hepatocytes. TBHP also activated phospho-ERK1/2, phospho-p38 and NF-κB, altered the Bcl-2/Bad ratio, reduced mitochondrial membrane potential, released cytochrome C and activated caspase 3, suggesting that TBHP induced oxidative stress responsive cell death via apoptotic pathway. FACS analysis and DNA fragmentation studies also confirmed the apoptotic cell death in TBHP exposed hepatocytes. Treatment with CSB effectively reduced these adverse effects by preventing the oxidative insult, alteration in the redox-sensitive signalling cascades and mitochondrial events. Combining, results suggest that antioxidant property of CSB make the molecule to be a potential protective measure against oxidative insult, cytotoxicity and cell death.  相似文献   
82.
Coral bleaching involves the loss of essential photosynthetic dinoflagellates (Symbiodinium sp.) from host gastrodermal cells in response to temperature or light stress. Although numerous potential cellular bleaching mechanisms have been proposed, there remains much uncertainty regarding which cellular events occur during early breakdown of the host–dinoflagellate symbiosis. In this study, transmission electron microscopy was used to conduct a detailed examination of symbiotic tissues of the tropical anemone Aiptasia pallida during early stages of host stress. Bleaching was induced by exposing specimens to a stress treatment of 32.5±0.5°C at 140±7 μ mol photons m?2 s?1 light intensity for 12 h, followed by 12 h at 24±1°C in darkness, repeated over a 48 h period. Ultrastructural examinations revealed numerous dense autophagic structures and associated cellular degradation in tentacle tissues after ~12 h of the stress treatment. Anemones treated with rapamycin, a known autophagy inducer, exhibited the same ultrastructural characteristics as heat‐stressed tissues, confirming that the structures observed during heat stress treatment were autophagic. In addition, symbionts appeared to be expelled from host cells via an apocrine‐like detachment mechanism from the apical ends of autophagic gastrodermal cells. This study provides the first ultrastructural evidence of host autophagic degradation during thermal stress in a cnidarian system and also supports earlier suggestions that autophagy is an active cellular mechanism during early stages of bleaching.  相似文献   
83.
84.
Abstract

Background: Platinum compounds are commonly used for lung cancer treatment. However, the severe side effects and relatively poor prognosis limit their therapeutic effect. Therefore, developing novel platinum derivative and treatment strategy are critical for current lung cancer therapy.

Methods: Flow cytometry, HMGB1 and ATP release, and immunoblotting were performed to evaluate the Oxaliplatin-induced immunogenic cell death (ICD) in two lung carcinoma cells. Vaccination approach and subcutaneous tumor models were created to analyze the tumor regression effect of Oxaliplatin. PD-L1 mRNA and protein levels were detected in LLC (Lewis lung carcinoma). Enhanced therapeutic efficacy of LLC was assessed by co-administration Oxaliplatin and aPD-L1 in murine lung tumor model.

Results: Oxaliplatin induced robust ICD in LLC cells, activated dendritic cells (DCs, CD80+CD86+) and enhanced cytotoxic T cells (CD8+) in LLC tumor tissues, which resulted in tumor regression. Co-administration of Oxaliplatin and checkpoint inhibitor, aPD-L1, could enhance the therapeutic efficacy of LLC in murine lung carcinoma.

Conclusion: This study reveals Oxaliplatin can induce robust ICD in tumor tissues and suppress tumor growth by activating DCs and enhancing T-cell infiltration. Notably, the Oxaliplatin-induced ICD provides an immunogenic microenvironment, which enhances the checkpoint inhibitor therapeutic efficacy of LLC.  相似文献   
85.
86.
Trifluorothymidine (TFT), a potent anticancer agent, inhibits thymidylate synthase (TS) and is incorporated into the DNA, both events resulting in cell death. Cell death induction related to DNA damage often involves activation of p53. We determined the role of p53 in TFT cytotoxicity and cell death induction, using, respectively, the sulforhodamine B-assay and FACS analysis, in a panel of cell lines with either wild type, inactive, or mutated p53. Neither TFT cytotoxicity nor cell death induction changed with TFT exposure in cell lines with wt, inactive or mutated p53. Conclusion: sensitivity to TFT is not dependent on the expression of wt p53.  相似文献   
87.
Few conventional cytotoxic anticancer therapeutics induce immunogenic cell death (ICD). This means that they induce tumor cells to undergo apoptosis while eliciting the emission of a spatiotemporal-defined combination of damage-associated molecular patterns (DAMPs) decoded by the immune system to activate antitumor immunity effective for long-term therapeutic success. The neurotoxin capsaicin (CPS) can induce both cancer cell apoptosis and immune-mediated tumor regression. In the present study, we investigated whether CPS is capable of eliciting the emission of ICD hallmarks in human bladder cancer cell lines undergoing apoptosis. We demonstrated that CPS induces pre- and early apoptotic cell surface exposure of calreticulin (CRT), HSP90, and HSP70 as well as ATP release. Moreover, CRT exposure was prevented by inhibition of endoplasmic reticulum–Golgi traffic by brefeldin A. Furthermore, high-mobility group box 1, HSP90, and HSP70 were passively released at late apoptotic stages. We provide the first evidence that CPS is an inducer of ICD hallmarks, suggesting CPS as a novel potential immunogenic cytotoxic agent.  相似文献   
88.
Human and mouse granzyme (Gzm)B both induce target cell apoptosis in concert with pore-forming perforin (Pfp); however the mechanisms by which other Gzms induce non-apoptotic death remain controversial and poorly characterised. We used timelapse microscopy to document, quantitatively and in real time, the death of target cells exposed to primary natural killer (NK) cells from mice deficient in key Gzms. We found that in the vast majority of cases, NK cells from wild-type mice induced classic apoptosis. However, NK cells from syngeneic Gzm B-deficient mice induced a novel form of cell death characterised by slower kinetics and a pronounced, writhing, ‘worm-like'' morphology. Dying cells initially contracted but did not undergo membrane blebbing, and annexin-V staining was delayed until the onset of secondary necrosis. As it is different from any cell death process previously reported, we tentatively termed this cell death ‘athetosis''. Two independent lines of evidence showed this alternate form of death was due to Gzm A: first, cell death was revealed in the absence of Gzm B, but was completely lost when the NK cells were deficient in both Gzm A and B; second, the athetotic morphology was precisely reproduced when recombinant mouse Gzm A was delivered by an otherwise innocuous dose of recombinant Pfp. Gzm A-mediated athetosis did not require caspase activation, early mitochondrial disruption or generation of reactive oxygen species, but did require an intact actin cytoskeleton and was abolished by latrunculin B and mycalolide B. This work defines an authentic role for mouse Gzm A in granule-induced cell death by cytotoxic lymphocytes.  相似文献   
89.
Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation.  相似文献   
90.
TRAIL, a putative anticancer cytokine, induces extrinsic cell death by activating the caspase cascade directly (Type I cells) via the death-inducing signaling complex (DISC) or indirectly (Type II cells) by caspase-8 cleavage of Bid and activation of the mitochondrial cell death pathway. Cancer cells are characterized by their dependence on aerobic glycolysis, which, although inefficient in terms of ATP production, facilitates tumor metabolism. Our studies show that TRAIL-induced cell death is significantly affected by the metabolic status of the cell. Inhibiting glycolysis with 2-deoxyglucose potentiates TRAIL-induced cell death, whereas glucose deprivation can paradoxically inhibit apoptosis. These conflicting responses to glycolysis inhibition are modulated by the balance between the Akt and AMPK pathways and their subsequent downstream regulation of mTORC1. This results in marked changes in protein translation, in which the equilibrium between anti- and pro-apoptotic Bcl-2 family member proteins is decided by their individual degradation rates. This regulates the mitochondrial cell death pathway and alters its sensitivity not only to TRAIL, but to ABT-737, a Bcl-2 inhibitor. Taken together, our studies show that the sensitivity of cancer cells to apoptosis can be modulated by targeting their unique metabolism in order to enhance sensitivity to apoptotic agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号