首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4064篇
  免费   211篇
  国内免费   94篇
  2024年   5篇
  2023年   42篇
  2022年   100篇
  2021年   103篇
  2020年   95篇
  2019年   140篇
  2018年   138篇
  2017年   88篇
  2016年   102篇
  2015年   138篇
  2014年   191篇
  2013年   310篇
  2012年   177篇
  2011年   232篇
  2010年   138篇
  2009年   189篇
  2008年   212篇
  2007年   233篇
  2006年   216篇
  2005年   204篇
  2004年   184篇
  2003年   149篇
  2002年   139篇
  2001年   106篇
  2000年   91篇
  1999年   134篇
  1998年   67篇
  1997年   69篇
  1996年   62篇
  1995年   55篇
  1994年   54篇
  1993年   39篇
  1992年   38篇
  1991年   21篇
  1990年   10篇
  1989年   11篇
  1988年   11篇
  1987年   6篇
  1986年   7篇
  1985年   13篇
  1984年   6篇
  1983年   5篇
  1982年   10篇
  1981年   8篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
排序方式: 共有4369条查询结果,搜索用时 15 毫秒
131.
The ethyl acetate extract of the conidia germination fluid from an Avena isolate (Br58) of Pyricularia oryzae had chlorosis-inducing activity on oat leaf segments. The same activity was also present in the acetone extract of an oatmeal agar culture of Br58. Fungal cultures were used for a large-scale preparation. A series of acetone and ethyl acetate extraction monitored by chromatography was used to isolate an active fraction. The active principle was purified by HPLC. We show by NMR and LC/MS that the toxin was an oxidized C18 unsaturated fatty acid named Mag-toxin. Mag-toxin induced chlorosis on oat leaf segments incubated in the light but not in the dark. Reactive oxygen species (ROS) and cell death were induced by Mag-toxin in oat cells. The sub-cellular localization of ROS generation induced by the toxin treatment was correlated with the location of mitochondria. Interestingly, the induction of ROS generation and cell death by Mag-toxin was light-independent.  相似文献   
132.
Protobothrops flavoviridis venom contains plural phospholipase A2 (PLA2) isozymes. A [Lys49]PLA2 called BPII induced cell death in human leukemia cells. PLA2, an [Asp49]PLA2 that has much stronger lipolytic activity than BPII, failed to induce cell death. BPII-treated cells showed morphological changes, DNA fragmentation, and nuclear condensation. This BPII-induced apoptotic cell death was neither inhibited by inhibitors of caspases 3 and 6 nor accompanied by activation of procaspase 3, indicating that BPII-induced cell death is caspase independent. Since inactive p-bromophenacylated BPII induced cell death, BPII-induced apoptotic cell death is independent of PLA2 lipolytic activity. Rapid externalization of phosphatidylserine in BPII-treated cells was observed for fluorescein isothiocyanate (FITC)-labeled annexin V. In the cells treated with BPII, this spread over the cell membranes, implying that the cell toxicity of BPII is mediated via its cell-surface receptor.  相似文献   
133.
Therapy resistance can be attributed to acquisition of anti-apoptotic mechanisms by the cancer cells. Therefore, developing approaches that trigger non-apoptotic cell death in cancer cells to compensate for apoptosis resistance will help to treat cancer effectively. Triple-negative breast cancers (TNBC) are among the most aggressive and therapy resistant to breast tumors. Here we report that manumycin A (Man A), an inhibitor of farnesyl protein transferase, reduces cancer cell viability through induction of non-apoptotic, non-autophagic cytoplasmic vacuolation death in TNBC cells. Man A persistently induced cytoplasmic vacuolation and cell death through the expression of microtubule-associated protein 1 light chain 3 (LC3) and p62 proteins along with endoplasmic reticulum (ER) stress markers, Bip and CHOP, and accumulation of ubiquitinated proteins. As inhibitors of apoptosis and autophagy failed to block cytoplasmic vacuolation and its associated protein expression or cell death, it appears that these processes are not involved in the death induced by Man A. Ability of thiol antioxidant, NAC in blocking Man A-induced vacuolation, death and its related protein expression suggests that sulfhydryl homeostasis may be the target of Man A. Surprisingly, normal human mammary epithelial cells failed to undergo cytoplasmic vacuolation and cell death, and grew normally in presence of Man A. In conjunction with its in vitro effects, Man A also reduced tumor burden in vivo in xenograft models that showed extensive cytoplasmic vacuoles and condensed nuclei with remarkable increase in the vacuolation-associated protein expression together with increase of p21, p27, PTEN and decrease of pAkt. Interestingly, Man A-mediated upregulation of p21, p27 and PTEN and downregulation of pAkt and tumor growth suppression were also mimicked by LC3 knockdown in MDA-MB-231 cells. Overall, these results suggest novel therapeutic actions by Man A through the induction of non-apoptotic and non-autophagic cytoplasmic vacuolation death by probably affecting ER stress, LC3 and p62 pathways in TNBC but not in normal mammary epithelial cells.  相似文献   
134.
135.
The biological functions of myotonic dystrophy protein kinase (DMPK), a serine/threonine kinase whose gene mutations cause myotonic dystrophy type 1 (DM1), remain poorly understood. Several DMPK isoforms exist, and the long ones (DMPK-A/B/C/D) are associated with the mitochondria, where they exert unknown activities. We have studied the isoform A of DMPK, which we have found to be prevalently associated to the outer mitochondrial membrane. The kinase activity of mitochondrial DMPK protects cells from oxidative stress and from the ensuing opening of the mitochondrial permeability transition pore (PTP), which would otherwise irreversibly commit cells to death. We observe that DMPK (i) increases the mitochondrial localization of hexokinase II (HK II), (ii) forms a multimeric complex with HK II and with the active form of the tyrosine kinase Src, binding its SH3 domain and (iii) it is tyrosine-phosphorylated by Src. Both interaction among these proteins and tyrosine phosphorylation of DMPK are increased under oxidative stress, and Src inhibition selectively enhances death in DMPK-expressing cells after HK II detachment from the mitochondria. Down-modulation of DMPK abolishes the appearance of muscle markers in in vitro myogenesis, which is rescued by oxidant scavenging. Our data indicate that, together with HK II and Src, mitochondrial DMPK is part of a multimolecular complex endowed with antioxidant and pro-survival properties that could be relevant during the function and differentiation of muscle fibers.  相似文献   
136.
Schwann cells (SCs) are fundamental for development, myelination and regeneration in the peripheral nervous system. Slow growth rate and difficulties in harvesting limit SC applications in regenerative medicine. Several molecules, including receptors for neurosteroids and neurotransmitters, have been suggested to be implicated in regulating physiology and regenerative potential of SCs. Adipose-derived stem cells (ASCs) can be differentiated into SC-like phenotype (dASC) sharing morphological and functional properties with SC, thus representing a valid SC alternative. We have previously shown that dASC express γ-aminobutyric-acid receptors, which modulate their proliferation and neurotrophic potential, although little is known about the role of other neurotransmitters in ASC. In this study, we investigated the expression of purinergic receptors in dASC. Using reverse transriptase (RT)-PCR, western blot analyses and immunocytochemistry, we have demonstrated that ASCs express P2X3, P2X4 and P2X7 purinoceptors. Differentiation of ASCs towards glial phenotype was accompanied by upregulation of P2X4 and P2X7 receptors. Using Ca2+-imaging techniques, we have shown that stimulation of purinoceptors with adenosine 5′-triphosphate (ATP) triggers intracellular Ca2+ signals, indicating functional activity of these receptors. Whole-cell voltage clamp recordings showed that ATP and BzATP induced ion currents that can be fully inhibited with specific P2X7 antagonists. Finally, using cytotoxicity assays we have shown that the increase of intracellular Ca2+ leads to dASC death, an effect that can be prevented using a specific P2X7 antagonist. Altogether, these results show, for the first time, the presence of functional P2X7 receptors in dASC and their link with critical physiological processes such as cell death and survival. The presence of these novel pharmacological targets in dASC might open new opportunities for the management of cell survival and neurotrophic potential in tissue engineering approaches using dASC for nerve repair.  相似文献   
137.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
138.
In this paper, we introduce a model of malaria, a disease that involves a complex life cycle of parasites, requiring both human and mosquito hosts. The novelty of the model is the introduction of periodic coefficients into the system of one-dimensional equations, which account for the seasonal variations (wet and dry seasons) in the mosquito birth and death rates. We define a basic reproduction number R 0 that depends on the periodic coefficients and prove that if R 0<1 then the disease becomes extinct, whereas if R 0>1 then the disease is endemic and may even be periodic.  相似文献   
139.
BackgroundFor myelodysplastic syndromes (MDS) (formerly known as preleukemia), a diverse group of myeloid neoplasms usually involving anemia in elderly persons, trends in U.S. death rates apparently have not been reported.MethodsTrends in annual age-standardized rates per 100,000 from 1999 to 2009 were examined for MDS using multiple causes vs. underlying cause alone, coded on death certificates for U.S. residents.ResultsThe death rate (all ages combined) for MDS increased from 1999 to 2009, from 1.62 to 1.84 using underlying cause alone and from 2.89 to 3.27 using multiple causes. Rates using multiple causes were about 80% higher than those based on underlying cause alone. From 2001 to 2004 the rate for MDS using underlying cause alone (but not using multiple causes) declined, accompanied by an increase in the rate for deaths from leukemia as underlying cause with mention of MDS; this trend coincided with the advent of the 2001 World Health Organization's reclassification of certain MDS as leukemia. The MDS rate for age 65+ years increased after 2005, whereas the rate for age 25–64 years was low but declined from 2001 to 2003 and then stabilized. For deaths with MDS coded as other than underlying cause, rates did not decline for deaths from each of the two most common causes (i.e., cardiovascular diseases and leukemia).ConclusionsEvidence for decreases in MDS-related mortality rates was limited; the increase at age 65+ years is consistent with increases in incidence rates reported from cancer registries. Using multiple causes of death vs. only the underlying cause results in substantially higher MDS-related death rates, shows the impact of changes in the classification of myeloid neoplasms and emphasizes the importance of reducing cardiovascular disease mortality in MDS patients.  相似文献   
140.
A serine protease with caspase- and legumain-like activities from basidiocarps of the edible basidiomycete Flammulina velutipes was characterized. The protease was purified to near homogeneity by three steps of chromatography using acetyl-Tyr-Val-Ala-Asp-4-methylcoumaryl-7-amide (Ac-YVAD-MCA) as a substrate. The enzyme was termed FvSerP (F. velutipes serine protease). This enzyme activity was completely inhibited by the caspase-specific inhibitor, Ac-YVAD-CHO, as well as moderately inhibited by serine protease inhibitors. Based on the N-terminal sequence, the cDNA of FvSerP was identified. The deduced protease sequence was a peptide composed of 325 amino acids with a molecular mass of 34.5 kDa. The amino acid sequence of FvSerP showed similarity to neither caspases nor to the plant subtilisin-like serine protease with caspase-like activity called saspase. FvSerP shared identity to the functionally unknown genes from class of Agaricomycetes, with similarity to the peptidase S41 domain of a serine protease. It was thus concluded that this enzyme is likely a novel serine protease with caspase- and legumain-like activities belonging to the peptidase S41 family and distributed in the class Agaricomycetes. This enzyme possibly functions in autolysis, a type of programmed cell death that occurs in the later stages of development of basidiocarps with reference to their enzymatic functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号