首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1228篇
  免费   99篇
  国内免费   45篇
  2023年   21篇
  2022年   37篇
  2021年   39篇
  2020年   38篇
  2019年   36篇
  2018年   44篇
  2017年   42篇
  2016年   25篇
  2015年   33篇
  2014年   48篇
  2013年   76篇
  2012年   52篇
  2011年   48篇
  2010年   41篇
  2009年   52篇
  2008年   59篇
  2007年   54篇
  2006年   48篇
  2005年   27篇
  2004年   46篇
  2003年   34篇
  2002年   49篇
  2001年   37篇
  2000年   38篇
  1999年   36篇
  1998年   20篇
  1997年   20篇
  1996年   23篇
  1995年   16篇
  1994年   17篇
  1993年   13篇
  1992年   13篇
  1991年   11篇
  1990年   10篇
  1989年   22篇
  1988年   23篇
  1987年   13篇
  1986年   11篇
  1985年   17篇
  1984年   12篇
  1983年   10篇
  1982年   12篇
  1981年   9篇
  1980年   10篇
  1979年   8篇
  1978年   7篇
  1977年   3篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
排序方式: 共有1372条查询结果,搜索用时 15 毫秒
31.
32.
The ability to rapidly translocate polystyrene microspheres attached to the surface of a plasma membrane domain reflects a unique form of cellular force transduction occurring in association with the plasma membrane of microtubule based cell extensions. This unusual form of cell motility can be utilized by protistan organisms for whole cell locomotion, the early events in mating, and transport of food organisms along the cell surface, and possibly intracellular transport of certain organelles. Since surface motility is observed in association with cilia and flagella of algae, sea urchin embryos and cultured mammalian cells, it is likely that it serves an additional role beyond those already cited; this is likely to be the transport of precursors for the assembly and turnover of ciliary and flagellar membranes and axonemes. In the case of the Chlamydomonas flagellum, where surface motility has been most extensively studied, it appears that cross-linking of flagellar surface exposed proteins induces a transmembrane signaling pathway that activates machinery for moving flagellar membrane proteins in the plane of the flagellar membrane. This signaling pathway in vegetative Chlamydomonas reinhardtii appears to involve an influx of calcium, a rise in intraflagellar free calcium concentration and a change in the level of phosphorylation of specific membrane-matrix proteins. It is hypothesized that flagellar surface contact with a solid substrate (during gliding), a polystyrene microsphere or another flagellum (during mating) will all activate a signaling pathway similar to the one artificially activated by the use of monoclonal antibodies to flagellar membrane glycoproteins. A somewhat different signaling pathway, involving a transient rise in intracellular cAMP level, may be associated with the mating of Chlamydomonas gametes, which is initiated by flagellum-flagellum contact. The hypothesis that the widespread observation of microsphere movements on various ciliary and flagellar surfaces may reflect a mechanism normally utilized to transport axonemal and membrane subunits along the internal surface of the organelle membrane presents a paradox in that one would expect this to be a constitutive mechanism, not one necessarily activated by a signaling pathway.  相似文献   
33.
Motile trichomes of Oscillatoria princeps Voucher were examined to determine the relationship between trichome length and the ability to glide through hardened or viscous media. A minimum length for movement in solid media was found to be 0.1 mm in 0.5% agar (w/v).Viscous media tests revealed that coordinated movements through methyl cellulose media were not seen in trichomes 15–40 μ long at the viscosity employed. The minimum length motility increases with the viscosity of the medium and the gliding rates observed are greater in longer trihomes. These findings are discussed in relation to trichome surface area and the hypothesis that the motility system is restricted to lateral surfaces of the trichome.  相似文献   
34.
《Current biology : CB》2020,30(23):4753-4762.e7
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
  相似文献   
35.
The first part of this review on entropic elastic processes in protein mechanisms (Urry, 1988) demonstrated with the polypentapeptide of elastin (Val1-Pro2-Gly3-Val4-Gly5)n that elastic structure develops as the result of an inverse temperature transition and that entropic elasticity is due to internal chain dynamics in a regular nonrandom structure. This demonstration is contrary to the pervasive perspective of entropic protein elasticity of the past three decades wherein a network of random chains has been considered the necessary structural consequence of the occurrence of dominantly entropic elastomeric force. That this is not the case provides a new opportunity for understanding the occurrence and role of entropic elastic processes in protein mechanisms. Entropic elastic processes are considered in two classes: passive and active. The development of elastomeric force on deformation is class I (passive) and the development of elastomeric force as the result of a chemical process shifting the temperature of a transition is class II (active). Examples of class I are elastin, the elastic filament of muscle, elastic force changes in enzyme catalysis resulting from binding processes and resulting in the straining of a scissile bond, and in the turning on and off of channels due to changes in transmembrane potential. Demonstration of the consequences of elastomeric force developing as the result of an inverse temperature transition are seen in elastin, where elastic recoil is lost on oxidation, i.e., on decreasing the hydrophobicity of the chain and shifting the temperature for the development of elastomeric force to temperatures greater than physiological. This is relevant in general to loss of elasticity on aging and more specifically to the development of pulmonary emphysema. Since random chain networks are not the products of inverse temperature transitions and the temperature at which an inverse temperature transition occurs depends on the hydrophobicity of the polypeptide chain, it now becomes possible to consider chemical processes for turning elastomeric force on and off by reversibly changing the hydrophobicity of the polypeptide chain. This is herein called mechanochemical coupling of the first kind; this is the chemical modulation of the temperature for the transition from a less-ordered less elastic state to a more-ordered more elastic state. In the usual considerations to date, development of elastomeric force is the result of a standard transition from a more-ordered less elastic state to a less-ordered more elastic state. When this is chemically modulated, it is herein called mechanochemical coupling of the second kind. For elastin and the polypentapeptide of elastin, since entropic elastomeric force results on formation of a regular nonrandom structure and thermal randomization of chains results in loss of elastic modulus to levels of limited use in protein mechanisms, consideration of regular spiral-like structures rather than ramdom chain networks or random coils are proposed for mechanochemical coupling of the second kind. Chemical processes to effect mechanochemical coupling in biological systems are most obviously phosphorylation-dephosphorylation and changes in calcium ion activity but also changes in pH. These issues are considered in the events attending parturition in muscle contraction and in cell motility.  相似文献   
36.
Mitotic centromere-associated kinesin (MCAK) is the best characterized member of the kinesin-13 family and plays important roles in microtubule dynamics during mitosis. Its activity and subcellular localization is tightly regulated by an orchestra of mitotic kinases, such as Aurora B. It is well known that serine 196 of MCAK is the major phosphorylation site of Aurora B in Xenopus leavis extracts and that this phosphorylation regulates its catalytic activity and subcellular localization. In the current study, we have addressed the conserved phosphorylation site serine 192 in human MCAK to characterize its function in more depth in human cancer cells. Our data confirm that S192 is the major phosphorylation site of Aurora B in human MCAK and that this phosphorylation has crucial roles in regulating its catalytic activity and localization at the kinetochore/centromere region in mitosis. Interfering with this phosphorylation leads to a delayed progression through prometa- and metaphase associated with mitotic defects in chromosome alignment and segregation. We show further that MCAK is involved in directional migration and invasion of tumor cells, and interestingly, interference with the S192 phosphorylation affects this capability of MCAK. These data provide the first molecular explanation for clinical observation, where an overexpression of MCAK was associated with lymphatic invasion and lymph node metastasis in gastric and colorectal cancer patients.  相似文献   
37.
Xanthomonas campestris pv. campestris (Xcc) controls virulence and plant infection mechanisms via the activity of the sensor kinase and response regulator pair HpaS/hypersensitive response and pathogenicity G (HrpG). Detailed analysis of the regulatory role of HpaS has suggested the occurrence of further regulators besides HrpG. Here we used in vitro and in vivo approaches to identify the orphan response regulator VemR as another partner of HpaS and to characterize relevant interactions between components of this signalling system. Bacterial two-hybrid and protein pull-down assays revealed that HpaS physically interacts with VemR. Phos-tag SDS-PAGE analysis showed that mutation in hpaS reduced markedly the phosphorylation of VemR in vivo. Mutation analysis reveals that HpaS and VemR contribute to the regulation of motility and this relationship appears to be epistatic. Additionally, we show that VemR control of Xcc motility is due in part to its ability to interact and bind to the flagellum rotor protein FliM. Taken together, the findings describe the unrecognized regulatory role of sensor kinase HpaS and orphan response regulator VemR in the control of motility in Xcc and contribute to the understanding of the complex regulatory mechanisms used by Xcc during plant infection.  相似文献   
38.
Campylobacter jejuni is a bacterial pathogen that is generally acquired as a zoonotic infection from poultry and animals. Adhesion of C. jejuni to human colorectal epithelial cells is weakened after loss of its cj0588 gene. The Cj0588 protein belongs to the type I group of TlyA (TlyAI) enzymes, which 2′‐O‐methylate nucleotide C1920 in 23S rRNA. Slightly longer TlyAII versions of the methyltransferase are found in actinobacterial species including Mycobacterium tuberculosis, and methylate not only C1920 but also nucleotide C1409 in 16S rRNA. Loss of TlyA function attenuates virulence of both M. tuberculosis and C. jejuni. We show here that the traits impaired in C. jejuni null strains can be rescued by complementation not only with the original cj0588 (tlyA I) but also with a mycobacterial tlyA II gene. There are, however, significant differences in the recombinant phenotypes. While cj0588 restores motility, biofilm formation, adhesion to and invasion of human epithelial cells and stimulation of IL‐8 production in a C. jejuni null strain, several of these properties are further enhanced by the mycobacterial tlyA II gene, in some cases to twice the original wild‐type level. These findings strongly suggest that subtle changes in rRNA modification patterns can affect protein synthesis in a manner that has serious consequences for bacterial pathogenicity.  相似文献   
39.
ABSTRACT

Hesperidin, a citrus flavonoid, can exert numerous beneficial effects on human health. Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract. In the present study, we investigated potential effects of hesperidin on pacemaker potential of ICC in murine small intestine and GI motility. A whole-cell patch-clamp configuration was used to record pacemaker potential in ICC, and GI motility was investigated in vivo by recording gastric emptying (GE) and intestinal transit rate (ITR). Hesperidin depolarized pacemaker potentials of ICC in a dose-dependent manner. Pre-treatment with methoctramine or 4-DAMP did not inhibit hesperidin-induced pacemaker potential depolarization. Neither a 5-HT3 receptor antagonist (Y25130) nor a 5-HT7 receptor antagonist (SB269970) reduced the effect of hesperidin on ICC pacemaker potential, whereas the 5-HT4 receptor antagonist RS39604 was found to inhibit this effect. In the presence of GDP–β–S, hesperidin-induced pacemaker potential depolarization was inhibited. Moreover, in the presence of U73122 and calphostin C, hesperidin did not depolarize pacemaker potentials. Furthermore, hesperidin accelerated GE and ITR in vivo. These results imply that hesperidin depolarized ICC pacemaker potential via 5-HT4 receptors, G protein, and PLC/PKC dependent pathways and that it increased GI motility. Therefore, hesperidin may be a promising novel drug to regulate GI motility.  相似文献   
40.
In externally fertilizing species, the gametes of both males and females are exposed to the influences of the environment into which they are released. Sperm are sensitive to abiotic factors such as salinity, but they are also affected by biotic factors such as sperm competition. In this study, the authors compared the performance of sperm of three goby species, the painted goby, Pomatoschistus pictus, the two-spotted goby, Pomatoschistus flavescens, and the sand goby, Pomatoschistus minutus. These species differ in their distributions, with painted goby having the narrowest salinity range and sand goby the widest. Moreover, data from paternity show that the two-spotted goby experiences the least sperm competition, whereas in the sand goby sperm competition is ubiquitous. The authors took sperm samples from dissected males and exposed them to high salinity water (31 PSU) representing the North Sea and low salinity water (6 PSU) representing the brackish Baltic Sea Proper. They then used computer-assisted sperm analysis to measure the proportion of motile sperm and sperm swimming speed 10 min and 20 h after sperm activation. The authors found that sperm performance depended on salinity, but there seemed to be no relationship to the species' geographical distribution in relation to salinity range. The species differed in the proportion of motile sperm, but there was no significant decrease in sperm motility during 20 h. The sand goby was the only species with motile sperm after 72 h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号