首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1228篇
  免费   99篇
  国内免费   45篇
  2023年   21篇
  2022年   37篇
  2021年   39篇
  2020年   38篇
  2019年   36篇
  2018年   44篇
  2017年   42篇
  2016年   25篇
  2015年   33篇
  2014年   48篇
  2013年   76篇
  2012年   52篇
  2011年   48篇
  2010年   41篇
  2009年   52篇
  2008年   59篇
  2007年   54篇
  2006年   48篇
  2005年   27篇
  2004年   46篇
  2003年   34篇
  2002年   49篇
  2001年   37篇
  2000年   38篇
  1999年   36篇
  1998年   20篇
  1997年   20篇
  1996年   23篇
  1995年   16篇
  1994年   17篇
  1993年   13篇
  1992年   13篇
  1991年   11篇
  1990年   10篇
  1989年   22篇
  1988年   23篇
  1987年   13篇
  1986年   11篇
  1985年   17篇
  1984年   12篇
  1983年   10篇
  1982年   12篇
  1981年   9篇
  1980年   10篇
  1979年   8篇
  1978年   7篇
  1977年   3篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
排序方式: 共有1372条查询结果,搜索用时 33 毫秒
101.
Retraction is a major rate-limiting step in cell motility, particularly in slow moving cell types that form large stable adhesions. Myosin II dependent contractile forces are thought to facilitate detachment by physically pulling up the rear edge. However, retraction can occur in the absence of myosin II activity in cell types that form small labile adhesions. To investigate the role of contractile force generation in retraction, we performed traction force microscopy during the movement of fish epithelial keratocytes. By correlating changes in local traction stress at the rear with the area retracted, we identified four distinct modes of retraction. “Recoil” retractions are preceded by a rise in local traction stress, while rear edge is temporarily stuck, followed by a sharp drop in traction stress upon detachment. This retraction type was most common in cells generating high average traction stress. In “pull” type retractions local traction stress and area retracted increase concomitantly. This was the predominant type of retraction in keratocytes and was observed mostly in cells generating low average traction stress. “Continuous” type retractions occur without any detectable change in traction stress, and are seen in cells generating low average traction stress. In contrast, to many other cell types, “release” type retractions occur in keratocytes following a decrease in local traction stress. Our identification of distinct modes of retraction suggests that contractile forces may play different roles in detachment that are related to rear adhesion strength. To determine how the regulation of contractility via MLCK or Rho kinase contributes to the mechanics of detachment, inhibitors were used to block or augment these pathways. Modulation of MLCK activity led to the most rapid change in local traction stress suggesting its importance in regulating attachment strength. Surprisingly, Rho kinase was not required for detachment, but was essential for localizing retraction to the rear. We suggest that in keratocytes MLCK and Rho kinase play distinct, complementary roles in the respective temporal and spatial control of rear detachment that is essential for maintaining rapid motility.  相似文献   
102.
At the leading edge of migrating cells, protrusive forces are developed by the assembly of actin filaments organised in a lamellipodial dendritic array at the front and a more distal lamellar linear array. Whether these two arrays are distinct or functionally linked and how they contribute to cell migration is an open issue. Tropomyosin severely inhibits lamellipodium formation and facilitates the lamellar array while enhancing migration, by a mechanism that is not understood. Here we show that the complex in vivo effects of tropomyosin are recapitulated in the reconstituted propulsion of neural Wiskott–Aldrich syndrome protein (N‐WASP)‐functionalised beads, which is based on the sole formation of a dendritic array of actin‐related protein (Arp)2/3‐branched filaments. Actin‐depolymerising factor (ADF) and tropomyosin control the length of the actin tail. By competing with Arp2/3 during filament branching, tropomyosin displays opposite effects on propulsion depending on the surface density of N‐WASP. Tropomyosin binding to the dendritic array is facilitated following filament debranching, causing its enrichment at the rear of the actin tail, like in vivo. These results unveil the mechanism by which tropomyosin generates two morphologically and dynamically segregated actin networks from a single one.  相似文献   
103.
The goal of this study was to identify new compounds from venoms able to modulate sperm physiology and more particularly sperm motility. For this purpose, we screened the effects of 16 snake venoms cleared of molecules higher than 15 kDa on sperm motility. Venoms rich in neurotoxins like those from Oxyuranus scutellatus scutellatus or Daboia russelii, were highly potent inhibitors of sperm motility. In contrast, venoms rich in myotoxins like those from Echis carinatus, Bothrops alternatus and Macrovipera lebetina, were inactive. From the main pharmacologically-active fraction of the Taipan snake O. scutellatus s., a proteomic approach allowed us to identify 16 different proteins, among which OS1 and OS2, two secreted phospholipases A2 (sPLA2). Purified OS1 and OS2 mimicked the inhibitory effect on sperm motility and were likely responsible for the inhibitory effect of the active fraction. OS1 and OS2 triggered sperm acrosome reaction and induced lipid rearrangements of the plasma membrane. The catalytic activity of OS2 was required to modulate sperm physiology since catalytically inactive mutants had no effect. Finally, sperm treated with OS2 were less competent than control sperm to initiate in vitro normal embryo development. This is the first report characterizing sPLA2 toxins that modulate in vitro sperm physiology.  相似文献   
104.
The mammalian genome encodes multiple Wiskott-Aldrich syndrome protein (WASP)/WASP-family Verprolin homologous (WAVE) proteins. Members of this family interact with the actin related protein (Arp) 2/3 complex to promote growth of a branched actin network near the plasma membrane or the surface of moving cargos. Arp2/3 mediated branching can further lead to formation of comet tails (actin rockets). Despite their similar domain structure, different WASP/WAVE family members fulfill unique functions that depend on their subcellular location and activity levels. We measured the relative efficiency of actin nucleation promotion of full-length WASP/WAVE proteins in a cytoplasmic extract from primary human umbilical vein endothelial cells (HUVEC). In this assay WAVE2 and WAVE3 complexes showed higher nucleation efficiency than WAVE1 and N-WASP, indicating distinct cellular controls for different family members. Previously, WASP and N-WASP were the only members that were known to stimulate comet formation. We observed that in addition to N-WASP, WAVE3 also induced short actin tails, and the other WAVEs induced formation of asymmetric actin shells. Differences in shape and structure of actin-based growth may reflect varying ability of WASP/WAVE proteins to break symmetry of the actin shell, possibly by differential recruitment of actin bundling or severing (pruning or debranching) factors.  相似文献   
105.
A monoclonal antibody to allatostatin I of the cockroach Diploptera punctata was used to establish a competitive enzyme‐linked immunosorbent assay for quantification of allatostatin‐like peptides in the hindgut of the adult male earwig, Euborellia annulipes. Hindguts of 0‐day males contained significantly more allatostatin‐positive material than those of 8‐day males fed on catfood. However, males starved for the first 8 days of adult life had significantly higher levels of allatostatin‐positive material than those of either 0‐day or of 8‐day fed males. Hindguts from 0‐day old males exhibited lower spontaneous motility in vitro than those from 8‐day males. Hindguts from males at both ages responded to allostatin with reversible, dosage‐dependent decreases in hindgut motility, and responded to proctolin with reversible, dosage‐dependent increases in hindgut motility. When both allatostatin and proctolin were applied to hindgut preparations simultaneously and in equal concentrations, the response varied with the stage of the male. Starvation enhanced hindgut motility and abolished the response to allatostatin, but not to proctolin. These results indicate the presence of material similar to cockroach allatostatins in male earwigs, and that the levels change with age and physiological stage. Furthermore, such peptides may indeed be regulatory neuropeptides and could modulate hindgut contraction. There was an increase in sensitivity to exogenous allatostatin in the hindgut during development from day 0 to day 8 in feeding males, but a loss in sensitivity in response to starvation; sensitivity to exogenous proctolin also increased with age, but such responsiveness was not diminished by starvation.  相似文献   
106.
Some effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human spermatozoa are reported. Significant increases in the values of the motility and of the other kinematic parameters have been observed when spermatozoa were exposed to an ELF-EMF with a square waveform of 5 mT amplitude and frequency of 50 Hz. By contrast, a 5 mT sine wave (50 Hz) and a 2.5 mT square wave (50 Hz) exposure did not produce any significant effect on sperm motility. The effects induced by ELF-EMF (50 Hz; 5 mT) during the first 3 h of exposure persisted for 21 h after the end of the treatment. These results indicate that ELF-EMF exposure can improve spermatozoa motility and that this effect depends on the field characteristics.  相似文献   
107.
Dong JH  Wen JF  Tian HF 《Gene》2007,396(1):116-124
Ras superfamily proteins are key regulators in a wide variety of cellular processes. Previously, they were considered to be specific to eukaryotes, and MglA, a group of obviously different prokaryotic proteins, were recognized as their only prokaryotic analogs or even ancestors. Here, taking advantage of quite a current accumulation of prokaryotic genomic databases, we have investigated the existence and taxonomic distribution of Ras superfamily protein homologs in a much wider prokaryotic range, and analyzed their phylogenetic correlation with their eukaryotic analogs. Thirteen unambiguous prokaryotic homologs, which possess the GDP/GTP-binding domain with all the five characteristic motifs of their eukaryotic analogs, were identified in 12 eubacteria and one archaebacterium, respectively. In some other archaebacteria, including four methanogenic archaebacteria and three Thermoplasmales, homologs were also found, but with the GDP/GTP-binding domains not containing all the five characteristic motifs. Many more MglA orthologs were identified than in previous studies mainly in delta-proteobacteria, and all were shown to have common unique features distinct from the Ras superfamily proteins. Our phylogenetic analysis indicated eukaryotic Rab, Ran, Ras, and Rho families have the closest phylogenetic correlation with the 13 unambiguous prokaryotic homologs, whereas the other three eukaryotic protein families (SRbeta, Sar1, and Arf) branch separately from them, but have a relatively close relationship with the methanogenic archaebacterial homologs and MglA. Although homologs were identified in a relative minority of prokaryotes with genomic databases, their presence in a relatively wide variety of lineages, their unique sequence characters distinct from those of eukaryotic analogs, and the topology of our phylogenetic tree altogether do not support their origin from eukaryotes as a result of lateral gene transfer. Therefore, we argue that Ras superfamily proteins might have already emerged at least in some prokaryotic lineages, and that the seven eukaryotic protein families of the Ras superfamily may have two independent prokaryotic origins, probably reflecting the 'fusion' evolutionary history of the eukaryotic cell.  相似文献   
108.
The Rab GTPase family regulates membrane domain organization and vesicular transport pathways. Recent studies indicate that one member of the family, Rab27a, regulates transport of lysosome-related organelles in specialized cells, such as melanosomes and lytic granules. Very little is known about the related isoform, Rab27b. Here we used genetically modified mice to study the involvement of the Rab27 proteins in mast cells, which play key roles in allergic responses. Both Rab27a and Rab27b isoforms are expressed in bone marrow-derived mast cells (BMMC) and localize to secretory granules. Nevertheless, secretory defects as measured by beta-hexosaminidase release in vitro and passive cutaneous anaphylaxis in vivo were found only in Rab27b and double Rab27 knockout (KO) mice. Immunofluorescence studies suggest that a subset of Rab27b and double Rab27-deficient BMMCs exhibit mild clustering of granules. Quantitative analysis of live-cell time-lapse imaging revealed that BMMCs derived from double Rab27 KO mice showed almost 10-fold increase in granules exhibiting fast movement (>1.5 microm/s), which could be disrupted by nocodazole. These results suggest that Rab27 proteins, particularly Rab27b, play a crucial role in mast cell degranulation and that their action regulates the transition from microtubule to actin-based motility.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号