首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14307篇
  免费   1843篇
  国内免费   2906篇
  19056篇
  2024年   100篇
  2023年   433篇
  2022年   538篇
  2021年   689篇
  2020年   800篇
  2019年   933篇
  2018年   684篇
  2017年   737篇
  2016年   796篇
  2015年   816篇
  2014年   882篇
  2013年   1028篇
  2012年   746篇
  2011年   746篇
  2010年   687篇
  2009年   817篇
  2008年   872篇
  2007年   933篇
  2006年   859篇
  2005年   687篇
  2004年   550篇
  2003年   553篇
  2002年   425篇
  2001年   443篇
  2000年   415篇
  1999年   313篇
  1998年   264篇
  1997年   211篇
  1996年   179篇
  1995年   139篇
  1994年   135篇
  1993年   104篇
  1992年   85篇
  1991年   67篇
  1990年   56篇
  1989年   44篇
  1988年   39篇
  1987年   34篇
  1986年   29篇
  1985年   27篇
  1984年   23篇
  1983年   17篇
  1982年   33篇
  1981年   16篇
  1980年   13篇
  1979年   15篇
  1978年   17篇
  1977年   10篇
  1976年   5篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
Troy Day  J. D. McPhail 《Oecologia》1996,108(2):380-388
We conducted an experiment to assess the change in foraging efficiency resulting from diet-induced morphological and behavioural plasticity in a species of freshwater, threespine stickleback (Gasterosteus sp.). Different degrees of morphological and behavioural change were induced using two prey items commonly found in the diet of this species, allowing us to estimate the relative importance of each type of plasticity. The purpose of the experiment was twofold. First, earlier work had suggested that diet variability might be an important factor in the evolution of trophic morphological plasticity in sticklebacks. The present results extend this work by revealing the adaptive significance of morphological plasticity. The current experiment also qualitatively assessed the compatibility of the time scale of morphological change with that of the natural resource variability experienced by this species. The results indicate that diet-induced plasticity improves foraging efficiency continuously for up to 72 days of prey exposure. This is probably due in part to plasticity of the external trophic morphology but our results also suggest a complex interplay between morphology and behaviour. The time scale appears to be matched to that of natural diet variability although it is possible that some traits exhibit non-labile plasticity. Our discussion highlights the important distinction between conditions favouring the evolution of labile versus non-labile plasticity. The second objective of the experiment was to determine the relative importance of morphological and behavioural plasticity. Few studies have attempted to quantify the adaptive significance of morphological plasticity and no study to our knowledge has separated the effects of morphological and behavioural plasticity. Our experiment reveals that both behavioural and morphological plasticity are important and it also suggests a dichotomy between the two: behavioural plasticity predominately affects searching efficiency whereas morphological plasticity predominately affects handling efficiency.  相似文献   
33.
34.
《Journal of morphology》2017,278(1):4-28
The laterosensory system is a mechanosensory modality involved in many aspects of fish biology and behavior. Laterosensory perception may be crucial for individual survival, especially in habitats where other sensory modalities are generally useless, such as the permanently aphotic subterranean environment. In the present study, we describe the laterosensory canal system of epigean and subterranean species of the genus Ituglanis (Siluriformes: Trichomycteridae). With seven independent colonizations of the subterranean environment in a limited geographical range coupled with a high diversity of epigean forms, the genus is an excellent model for the study of morphological specialization to hypogean life. The comparison between epigean and subterranean species reveals a trend toward reduction of the laterosensory canal system in the subterranean species, coupled with higher intraspecific variability and asymmetry. This trend is mirrored in other subterranean fishes and in species living in different confined spaces, like the interstitial environment. Therefore, we propose that the reduction of the laterosensory canal system should be regarded as a troglomorphic (= cave‐related) character for subterranean fishes. We also comment about the patterns of the laterosensory canal system in trichomycterids and use the diversity of this system among species of Ituglanis to infer phylogenetic relationships within the genus. J. Morphol. 278:4–28, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   
35.
36.
Forest age structure is one of the main indicators of biodiversity in temperate and boreal forests worldwide. This indicator was mainly chosen for the conservation of a subset of rare or sensitive species related to the oldest age classes, not to capture variability across the entire biodiversity spectrum, but is often considered as such. In this study, we analysed alpha and beta diversity in temporary plots of western Quebec, Canada, to consider biodiversity indicators complementary to existing forest age structure targets. Our analysis revealed that considered individually, stand characteristics such as cover type and height are better predictors of changes in site-level contribution to tree beta diversity than age. We also show that plots belonging to different age classes can be similar in terms of tree alpha diversity. Height class was found to have a more significant impact on tree alpha diversity than expected: height was more important than age in coniferous forests, and in deciduous and mixedwood stands it frequently complemented age in explaining the observed diversity patterns. Our results suggest that forest age structure target levels should not be used as the sole indicator of ecosystem sustainability, and that some mature secondary stands can provide significant contributions to biodiversity. We propose that more efficient trade-offs between forest exploitation, ecosystem functioning and environmental conservation can be attained if: (i) forest age structure targets are complemented by cover type and stand height; or (ii) complementary biodiversity indicators of ecosystem sustainability are implemented.  相似文献   
37.
38.
39.
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait‐space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.  相似文献   
40.
Bradyrhizobium are N2-fixing microsymbionts of legumes with relevant applications in agricultural sustainability, and we investigated the phylogenetic relationships of conserved and symbiotic genes of 21 bradyrhizobial strains. The study included strains from Western Australia (WA), isolated from nodules of Glycine spp. the country is one genetic center for the genus and from nodules of other indigenous legumes grown in WA, and strains isolated from forage Glycine sp. grown in South Africa. The 16S rRNA phylogeny divided the strains in two superclades, of B. japonicum and B. elkanii, but with low discrimination among the species. The multilocus sequence analysis (MLSA) with four protein-coding housekeeping genes (dnaK, glnII, gyrB and recA) pointed out seven groups as putative new species, two within the B. japonicum, and five within the B. elkanii superclades. The remaining eleven strains showed higher similarity with six species, B. lupini, B. liaoningense, B. yuanmingense, B. subterraneum, B. brasilense and B. retamae. Phylogenetic analysis of the nodC symbiotic gene clustered 13 strains in three different symbiovars (sv. vignae, sv. genistearum and sv. retamae), while seven others might compose new symbiovars. The genetic profiles of the strains evaluated by BOX-PCR revealed high intra- and interspecific diversity. The results point out the high level of diversity still to be explored within the Bradyrhizobium genus, and further studies might confirm new species and symbiovars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号