首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1604篇
  免费   197篇
  国内免费   288篇
  2024年   11篇
  2023年   54篇
  2022年   64篇
  2021年   84篇
  2020年   97篇
  2019年   90篇
  2018年   73篇
  2017年   69篇
  2016年   93篇
  2015年   82篇
  2014年   83篇
  2013年   126篇
  2012年   92篇
  2011年   94篇
  2010年   84篇
  2009年   82篇
  2008年   94篇
  2007年   73篇
  2006年   70篇
  2005年   59篇
  2004年   47篇
  2003年   55篇
  2002年   43篇
  2001年   37篇
  2000年   48篇
  1999年   35篇
  1998年   17篇
  1997年   27篇
  1996年   23篇
  1995年   21篇
  1994年   23篇
  1993年   21篇
  1992年   12篇
  1991年   20篇
  1990年   10篇
  1989年   10篇
  1988年   9篇
  1987年   6篇
  1986年   11篇
  1985年   10篇
  1984年   8篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
排序方式: 共有2089条查询结果,搜索用时 15 毫秒
141.
142.
Flower bud differentiation is a key component of plant blooming biology and understanding how it works is vital for flowering regulation and plant genetic breeding, increasing the number and quality of flowering. Red soil is the most widely covered soil type in the world, and it is also the most suitable soil type for crape myrtle planting. The flower buds of crape myrtle (Lagerstroemia indica) planted in red soil were employed as experimental materials in this study, and the distinct periods of differentiation were identified using stereomicroscopy and paraffin sectioning. We optimized the steps of dehydration, transparency, embedding, sectioning and staining when employing paraffin sections. When seen under a microscope, this optimization can make the cell structure of paraffin sections obvious, the tissue structure complete, and the staining clear and natural. The flower bud differentiation process is divided into 7 periods based on anatomical observations of the external morphology and internal structure during flower bud differentiation: undifferentiated period, start of differentiation period, inflorescence differentiation period, calyx differentiation period, petal differentiation period, stamen differentiation period, and pistil differentiation period. The differentiation time is concentrated from the end of May to mid-June. Crape myrtle flower bud differentiation is a complicated process, and the specific regulatory mechanism and affecting elements need to be investigated further.  相似文献   
143.
为揭示长期淹水环境下基于形态、生物量和养分的河竹鞭根系统的生长策略,为河竹在水湿地和江河湖库消落带植被恢复中的应用提供参考,调查测定了人工喷灌供水和淹水处理3、6、12个月的河竹一年生竹鞭及其根系的形态和生理生化指标,分析了河竹鞭和鞭根形态特征和生物量分配及鞭根系统的养分吸收与平衡.结果表明: 长期淹水对河竹鞭节长、鞭径和土中根根径并无明显影响.淹水3个月整体上对鞭的形态特征影响小,水中翘鞭较少,但一定程度上抑制了根的生长.随着淹水时间的延长,水中鞭、根大量生长,同时促进了土中鞭、根的生长,但土中、水中鞭生物量和土中根生物量占总生物量的比例变化并不明显,而水中根生物量/总生物量和水中根生物量/土中根生物量显著升高,体现出河竹可以通过鞭根系统的生长调节和生物量合理分配来逐步适应淹水环境.长期淹水整体上降低了河竹土中根的根系活力,抑制了土中根对养分的吸收,但对土中根养分化学计量比的影响较小,而使水中根的根系活力显著增强,养分化学计量比产生明显的适应性调节,N/P升高,N/K和P/K降低.水中根不仅起到氧气吸收功能,还具有较强的养分吸收功能.这是河竹有效适应淹水环境的生长策略之一.  相似文献   
144.
采用石蜡切片和酶联免疫法(ELISA)对罗汉果雄性、雌性、两性花芽分化过程的形态和激素水平变化进行观测,为罗汉果开花调控和品种选育提供科学依据。结果表明:(1)罗汉果雄性、雌性、两性花的花芽分化过程均可分为花芽未分化期、花芽分化初期、花序分化期、萼片原基分化期、花瓣原基分化期、雄蕊原基分化期和雌蕊原基分化期7个阶段。雄蕊原基分化期前,3种花芽分化过程无明显差异,各时期形态特征均依次为:茎端呈圆锥状(花芽未分化期)→茎端经半球形变成扁平状(花芽分化初期)→距茎端5~7节位处分化出穗状花序(花序分化期)→小花原基周围形成5个萼片原基(萼片原基分化期)→萼片原基内侧形成5个花瓣原基(花瓣原基分化期)。雄蕊和雌蕊原基分化期,3种花芽分化过程存在明显差异,雄蕊原基内侧出现雌蕊原基后,雄花芽雄蕊原基继续发育成雄蕊,雌蕊原基停滞生长,退为一个小突起;雌花芽雌蕊原基继续发育成雌蕊,雄蕊原基生长缓慢,退化为小花丝;两性花芽雌蕊和雄蕊原基均继续发育,形成外观正常的雌蕊和雄蕊。(2)内源激素脱落酸(ABA)、赤霉素(GAs)和玉米素核苷(ZR)含量在3种花芽分化过程中变化规律相似,即ABA含量在花芽生理分化期降低,花芽形态分化期升高,而GAs和ZR含量则基本保持不变;吲哚乙酸(IAA)含量在3种花芽分化过程中变化存在明显差异,雌花芽IAA含量在花芽生理分化期升高,花芽形态分化期逐渐降低,而雄性和两性花芽的IAA含量则基本保持不变。ABA/GAs、ABA/IAA、ZR/IAA和ZR/GAs激素含量比值在3种花芽分化过程中变化规律相似,ABA/GAs在花芽生理分化期降低,花芽形态分化期升高,而BA/IAA、ZR/IAA和ZR/GAs则基本保持不变。研究认为,罗汉果花芽分化过程经历一个"两性期",高ABA含量和ABA/GAs比值有利于罗汉果花芽分化,IAA可能对罗汉果花性分化具有重要作用。  相似文献   
145.
利用扫描电子显微镜对黑龙江苹果亚科5属14种植物导管分子的管腔微形态结构特征进行了比较研究。结果显示:(1)该亚科植物导管分子的管腔长度、宽度及端壁斜度角有较大的差别。(2)孔纹导管在该亚科植物种中均存在,网纹导管和螺纹导管仅见于苹果属和花楸属中。(3)导管分子管壁除苹果属及山楂属中的毛山楂、辽宁山楂外均有螺纹加厚。(4)纹孔的排列方式为互列式、对列式及互列、对列同时存在。(5)在所观察的植物中花楸、山荆子、无毛山楂导管端壁具单穿孔板和梯状穿孔板,其余种的导管端壁仅具单穿孔板。(6)导管纹孔膜残留现象普遍存在。研究表明,导管分子管腔的微形态结构特征,可为该亚科植物的系统演化提供形态学依据;导管分子微形态结构特征与其所处的环境存在一定的适应性。  相似文献   
146.
A staging system for development of gladiola (Gladiolus × grandiflorus) that relies on simple, visual, non‐destructive criteria is proposed. Four field trials were conducted during the spring 2010, autumn/winter 2011 and winter 2011 at Santa Maria, RS, Brazil, with different gladiola cultivars, in order to observe the developmental stages of the above‐ground parts and their dry matter. The developmental cycle, which starts at dormant corm and ends with plant senescence, is divided into four developmental phases: dormancy phase, sprouting phase (from filiform roots appearance to sheaths appearance), vegetative phase (from emergence of the first leaf tip to emergence of the final leaf tip on the stem) and reproductive phase (from heading to plant senescence). The developmental stages that were identified during the dormancy phase and during the sprouting phases are coded as S stages: S0 = dormant corm, S1 = appearance of roots, S2.1 = first sheath, S2.2 = second sheath and S2.3 = third sheath. Vegetative phase is coded as V stages: VE = emergence of the sheaths above ground, V1 = first leaf, V2 = second leaf, Vn = nth leaf and VF = flag leaf. Leaf tip is the marker for V1–VF. The developmental stages during the reproductive phases are coded as R stages: R1 = heading, R2 = blooming, R3 = onset of flowering, R4 = end of anthesis, R5 = end of florets senescence and R6 = plant senescence (leaves and floret axis are brown). Sub‐stages have also been assigned between R1 and R2 and between R3 and R4. Illustrations (photographs) of each developmental stage taken from field pot‐grown plants are provided and the proposed scale was tested with field observations. These criteria are straight forward and allow for quick determination of development stage. This system can be used by both farmers and for experimental trials.  相似文献   
147.
The interplay between evolutionary rates and modularity influences the evolution of organismal body plans by both promoting and constraining the magnitude and direction of trait response to ecological conditions. However, few studies have examined whether the best‐fit hypothesis of modularity is the same as the shape subset with the greatest difference in evolutionary rate. Here, we develop a new phylogenetic comparative method for comparing evolutionary rates among high‐dimensional traits, and apply this method to analyze body shape evolution in bioluminescent lanternfishes. We frame the study of evolutionary rates and modularity through analysis of three hypotheses derived from the literature on fish development, biomechanics, and bioluminescent communication. We show that a development‐informed partitioning of shape exhibits the greatest evolutionary rate differences among modules, but that a hydrodynamically informed partitioning is the best‐fit modularity hypothesis. Furthermore, we show that bioluminescent lateral photophores evolve at a similar rate as, and are strongly integrated with, body shape in lanternfishes. These results suggest that overlapping life‐history constraints on development and movement define axes of body shape evolution in lanternfishes, and that the positions of their lateral photophore complexes are likely a passive outcome of the interaction of these ecological pressures.  相似文献   
148.
Rapid morphological changes in response to fluctuating natural environments are a common phenomenon in species that undergo adaptive radiation. The dramatic ecological changes in Lake Victoria provide a unique opportunity to study environmental effects on cichlid morphology. This study shows how four haplochromine cichlids adapted their premaxilla to a changed diet over the past 30 years. Directly after the diet change toward larger and faster prey in the late 1980s, the premaxilla (upper jaw) changed in a way that is in agreement with a more food manipulating feeding style. During the 2000s, two zooplanktivorous species showed a reversal of morphological changes after returning to their original diet, whereas two other species showed no reversal of diet and morphology. These rapid changes indicate a potential for extremely fast adaptive responses to environmental fluctuations, which are likely inflicted by competition release and increase, and might have a bearing on the ability of haplochromines to cope with environmental changes. These responses could be due to rapid genetic change or phenotypic plasticity, for which there is ample evidence in cichlid fish structures associated with food capture and processing. These versatile adaptive responses are likely to have contributed to the fast adaptive radiation of haplochromines.  相似文献   
149.
Body shape variation is integrally related to many aspects of fish ecology, including locomotion and foraging, and can indicate the functional diversity of fish assemblages. Few studies have thoroughly characterized body shape in a diverse marine fish clade, or investigated both temporal and spatial patterns of variation in body shape disparity. Here, I use digital photographs to measure geometric body shape in 66 species of north‐east Pacific rockfish (Sebastes spp.), including a correction for error introduced by arching of specimens. Different components of interspecific shape variation show associations with fish size, depth habitat, trophic niche and phylogenetic relationships. Overall, the accumulation of body shape disparity appears to have been near‐constant over time, and shows little variation across the latitudinal range of rockfish.  相似文献   
150.
We present five case studies among articulate (rhynchonelliform) brachiopods, i.e. of Rhynchonellida, Cancellothyridoidea, Terebratuloidea, Dyscolioidea, Laqueoidea, and various terebratulids with modified long‐loops, in an attempt to illustrate and better understand congruence and conflict between morpho‐classification and rDNA‐based molecular clade structure, having been prompted to address these issues by difficulties encountered when describing the newly collected brachiopod, E biscothyris bellonensis gen. et sp. nov. The five studies reveal dramatic conflict in the Rhynchonellida and Terebratuloidea/Dyscolioidea, good congruence in the Cancellothyridoidea and Laqueoidea, and fair congruence (albeit with weak phylogenetic signal) in the long‐looped terebratulids. We suggest that the leading cause of the observed conflict lies in the use of inadequately specific morphological characters and morpho‐classification. Phylogenetic systematic (cladistic) analyses of Rhynchonellida also conflict markedly with the rDNA gene tree, leading us to recognize that such analyses are not only conceptually circular (using morphological characters to assess a morphological classification) but also to propose that they are biased by the act of classification that necessarily precedes the identification of putatively homologous characters; when the prior classification does not reflect evolutionary history, phylogenetic analysis will do likewise. In addition, we propose that the brachiopod community has overlooked the significance of two sources of morphological homoplasy affecting brachiopod systematics: (1) the loss of co‐adapted genomic complexes caused by mass extinctions at the end of the Permian; and (2) the pervasive consequences of developmental integration and constraint resulting from the integrated roles of the outer mantle epithelium in shell deposition and growth that underly the determination of form and the shell‐based classification. © 2015 The Linnean Society of London  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号