首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   579篇
  免费   36篇
  国内免费   19篇
  2023年   12篇
  2022年   7篇
  2021年   11篇
  2020年   9篇
  2019年   12篇
  2018年   15篇
  2017年   11篇
  2016年   13篇
  2015年   22篇
  2014年   25篇
  2013年   55篇
  2012年   20篇
  2011年   21篇
  2010年   23篇
  2009年   22篇
  2008年   24篇
  2007年   27篇
  2006年   28篇
  2005年   24篇
  2004年   22篇
  2003年   20篇
  2002年   20篇
  2001年   16篇
  2000年   5篇
  1999年   12篇
  1998年   4篇
  1997年   10篇
  1996年   6篇
  1995年   11篇
  1994年   6篇
  1993年   4篇
  1992年   7篇
  1991年   7篇
  1990年   6篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   6篇
  1985年   12篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1981年   8篇
  1980年   5篇
  1979年   8篇
  1978年   7篇
  1977年   5篇
  1976年   8篇
  1974年   6篇
  1972年   1篇
排序方式: 共有634条查询结果,搜索用时 234 毫秒
131.
p38γ is a member of p38 MAPK family which contains four isoforms p38α, p38β, p38γ, and p38δ. p38γ MAPK has unique function and is less investigated. Recent studies revealed that p38γ MAPK may be involved in tumorigenesis and cancer aggressiveness. However, the underlying cellular/molecular mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) is a process that epithelial cancer cells transform to facilitate the loss of epithelial features and gain of mesenchymal phenotype. EMT promotes cancer cell progression and metastasis, and is involved in the regulation of cancer stem cells (CSCs) which have self-renewal capacity and are resistant to chemotherapy and target therapy. We showed that p38γ MAPK significantly increased EMT in breast cancer cells; over-expression of p38γ MAPK enhanced EMT while its down-regulation inhibited EMT. Meanwhile, p38γ MAPK augmented CSC population while knock down of p38γ MAPK decreased CSC ratio in breast cancer cells. MicroRNA-200b (miR-200b) was down-stream of p38γ MAPK and inhibited by p38γ MAPK; miR-200b mimics blocked p38γ MAPK-induced EMT while miR-200b inhibitors promoted EMT. p38γ MAPK regulated miR-200b through inhibiting GATA3. p38γ MAPK induced GATA3 ubiquitination, leading to its proteasome-dependent degradation. Suz12, a Polycomb group protein, was down-stream of miR-200b and involved in miR-200b regulation of EMT. Thus, our study established an important role of p38γ MAPK in EMT and identified a novel signaling pathway for p38γ MAPK–mediated tumor promotion.  相似文献   
132.
Rhodococcus erythropolis N9T-4 grows on an inorganic solid-state medium with no additional carbon and energy sources; however, it is unable to grow well in a liquid culture medium under the oligotrophic conditions. We examined submerged cultivations of N9T-4 using a polyurethane foam sponge to achieve approximately 10 times of the oligotrophic growth of the bacterium in the liquid culture medium.  相似文献   
133.
柠檬烯和红没药烯均为植物天然产物,分别属于单萜类和倍半萜类化合物,能够预防和治疗癌症等多种疾病。以其作为前体物,还可以转化合成多种具有高附加值的工业产品,例如药品、保健品、化妆品及生物燃料等。目前柠檬烯和红没药烯的工业生产主要是通过植物提取法实现的,但从植物组织中提取柠檬烯和红没药烯存在着产物含量低和分离纯化困难等缺点。微生物代谢工程的快速发展为这些植物天然产物的生产提供了一条更具潜力的生物合成路线。利用微生物代谢工程技术构建生产这些有价值的植物天然产物的微生物细胞工厂具有绿色清洁、可持续发展和经济效益好等独特优势。文中系统综述了近年来代谢工程技术在微生物合成柠檬烯和红没药烯过程中的应用进展,包括所涉及的宿主菌株、关键酶、代谢途径及其改造等,并探讨了其未来发展方向。  相似文献   
134.
The retinaldehyde dehydrogenase (RALDH) enzymes, RALDH1, RALDH2, and RALDH3, catalyze the irreversible oxidation of retinaldehyde to all-trans-retinoic acid (ATRA). Despite the importance of the RALDH enzymes in embryonic development, postnatal growth and differentiation, and in several disease states, there are no commercially available inhibitors that specifically target these isozymes. We report here the development and characterization of a small molecule inhibitor dichloro-all-trans-retinone (DAR) (Summers et al., 2017) that is an irreversible inhibitor of RALDH1, 2, and 3 that effectively inhibits RALDH1, 2, and 3 in the nanomolar range but has no inhibitory activity against mitochondrial ALDH2. These results provide support for the development of DAR as a specific ATRA synthesis inhibitor for a variety of experimental and clinical applications.  相似文献   
135.
The effects of cinnamyl alcohol dehydrogenase (CAD, EC.1.1.1.195) down-regulation on lignin profiles of plants were analysed in four selected transgenic lines of tobacco (Nicotiana tabacum L. cv. Samsun) exhibiting different levels of CAD activity (8–56% of the control). A significant decrease in thioacidolysis yields (i.e. yield of β-O-4 linked monomers) and in the ratio of syringyl to guaiacyl monomers (S/G) was observed for three transgenic lines and the most drastic reduction (up to 50%) was correlated with the lowest level of CAD activity. Higher lignin extractability by mild alkali treatment was confirmed, and, in addition to a tenfold increase in C6-C1 aldehydes, coniferyl aldehyde was detected by high-performance liquid chromatography in the alkali extracts from the xylem of transgenic plants. In-situ polymerisation of cinnamyl aldehydes in stem sections of untransformed tobacco gave a xylem cell wall coloration strikingly similar to the reddish-brown coloration of the xylem of antisense CAD-down-regulated plants. Overall, these data provide new arguments for the involvement of polymerised cinnamyl aldehydes in the formation of the red-coloured xylem of CAD-down-regulated plants. Received: 24 January 1997 / Accepted: 14 May 1997  相似文献   
136.
137.
Electrophiles are electron-deficient species that form covalent bonds with electron-rich nucleophiles. In biological systems, reversible electrophile–nucleophile interactions mediate basal cytophysiological functions (e.g. enzyme regulation through S-nitrosylation), whereas irreversible electrophilic adduction of cellular macromolecules is involved in pathogenic processes that underlie many disease and injury states. The nucleophiles most often targeted by electrophiles are side chains on protein amino acids (e.g. Cys, His, and Lys) and aromatic nitrogen sites on DNA bases (e.g. guanine N7). The sulfhydryl thiol (RSH) side chain of cysteine residues is a weak nucleophile that can be ionized in specific conditions to a more reactive nucleophilic thiolate (RS?). This review will focus on electrophile interactions with cysteine thiolates and the pathophysiological consequences that result from irreversible electrophile modification of this anionic sulfur. According to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson, electrophiles and nucleophiles can be classified as either soft or hard depending on their relative polarizability. HSAB theory suggests that electrophiles will preferentially and more rapidly form covalent adducts with nucleophiles of comparable softness or hardness. Application of HSAB principles, in conjunction with in vitro and proteomic studies, have indicated that soft electrophiles of broad chemical classes selectively form covalent Michael-type adducts with soft, highly reactive cysteine thiolate nucleophiles. Therefore, these electrophiles exhibit a common mechanism of cytotoxicity. As we will discuss, this level of detailed mechanistic understanding is a necessary prerequisite for the rational development of effective prevention and treatment strategies for electrophile-based pathogenic states.  相似文献   
138.
J P Rose  J Hempel  I Kuo  R Lindahl  B C Wang 《Proteins》1990,8(4):305-308
NAD-linked aldehyde dehydrogenases (A1DH) (EC 1.2.1.3) catalyze the irreversible oxidation of a wide variety of aldehydes to their respective carboxylic acids. Crystals of a class 3 AIDH (from an Escherichia coli expression system) suitable for X-ray analysis have been obtained. These crystals, which can be grown to a size of 0.8 x 0.3 x 0.2 mm, diffract to 2.5 A resolution. Analysis of the diffraction pattern indicates that the crystals belong to the monoclinic space group P21, with cell parameters a = 65.11 A, b = 170.67 A, c = 47.15 A, and beta = 110.5 degrees. Assuming one dimer per asymmetric unit, the value Vm is calculated to be 2.45 and the solvent content of the crystal is estimated to be 50%. A self-rotation function study produced significant rotation peaks (58% of the origin) on the kappa = 180 section at psi = 90 degrees and phi = 71 degrees and 341 degrees, indicating that the pseudo-dimer axis is (or is very nearly) perpendicular to the b-axis.  相似文献   
139.
Aldehyde dehydrogenase was measured in primary cultures of hepatocytes obtained with a two-step collagenase perfusion either from human hepatic tissue or from livers of Fisher rats. Basal enzyme activity declines gradually as a function of time in culture, but remains at all times higher when measured with propionaldehyde and NAD (P/NAD) than with benzaldehyde and NADP (B/NADP). Treatment of the cultures with 2 M of 3-methylcholanthrene for four days significantly increased the B-NADP activity of human and rat hepatocytes (tenfold and eightfold respectively). In human hepatocytes 3-methylcholanthrene increases also the P/NAD activity, but to a lesser extent (twofold), compared to the B/NADP activity. Due to the significant enhancement of B/NADP activity in cultures of human and rat hepatocytes after application of 3-methylcholanthrene, the initial difference in the basal activity levels between the P/NAD and B/NADP forms diminishes or, in the case of human hepatocytes, is even inverted. These results show for the first time that aldehyde dehydrogenase activity is increased in cultured human hepatocytes. This biochemical property is preserved in human and rat hepatocyte cultures, despite the rather quick loss of the basal aldehyde dehydrogenase activity.Abbreviations ALDH aldehyde dehydrogenase - B benzaldehyde - p-p-DDT 1,1,1,-trichlo-2,2,bis(p-chlorophenyl)ethane - DMSO dimethylsulfoxide - 3-MC 3-methylcholanthrene - MEM Minimal Essential Medium - P proprionaldehyde - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   
140.
Long-chain alcohol dehydrogenase and longchain aldehyde dehydrogenase were induced in the cells of Candida tropicalis grown on n-alkanes. Subcellular localization of these dehydrogenases, together with that of acyl-CoA synthetase and glycerol-3-phosphate acyltransferase, was studied in terms of the metabolism of fatty acids derived from n-alkane substrates. Both longchain alcohol and aldehyde dehydrogenases distributed in the fractions of microsomes, mitochondria and peroxisomes obtained from the alkane-grown cells of C. tropicalis. Acyl-CoA synthetase was also located in these three fractions. Glycerol-3-phosphate acyltransferase was found in microsomes and mitochondria, in contrast to fatty acid -oxidation system localized exclusively in peroxisomes. Similar results of the enzyme localization were also obtained with C. lipolytica grown on n-alkanes. These results suggest strongly that microsomal and mitochondrial dehydrogenases provide long-chain fatty acids to be utilized for lipid synthesis, whereas those in peroxisomes supply fatty acids to be degraded via -oxidation to yield energy and cell constituents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号