首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   11篇
  国内免费   7篇
  506篇
  2023年   7篇
  2022年   12篇
  2021年   7篇
  2020年   9篇
  2019年   15篇
  2018年   29篇
  2017年   6篇
  2016年   8篇
  2015年   12篇
  2014年   39篇
  2013年   41篇
  2012年   24篇
  2011年   48篇
  2010年   24篇
  2009年   29篇
  2008年   19篇
  2007年   23篇
  2006年   17篇
  2005年   19篇
  2004年   7篇
  2003年   14篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   7篇
  1998年   3篇
  1997年   12篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1993年   6篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
排序方式: 共有506条查询结果,搜索用时 15 毫秒
51.
Mitochondria contribute to cytosolic Ca2+ homeostasis through several uptake and release pathways. Here we report that 1,2-sn-diacylglycerols (DAGs) induce Ca2+ release from Ca2+-loaded mammalian mitochondria. Release is not mediated by the uniporter or the Na+/Ca2+ exchanger, nor is it attributed to putative catabolites. DAGs-induced Ca2+ efflux is biphasic. Initial release is rapid and transient, insensitive to permeability transition inhibitors, and not accompanied by mitochondrial swelling. Following initial rapid release of Ca2+ and relatively slow reuptake, a secondary progressive release of Ca2+ occurs, associated with swelling, and mitigated by permeability transition inhibitors. The initial peak of DAGs-induced Ca2+ efflux is abolished by La3+ (1 mM) and potentiated by protein kinase C inhibitors. Phorbol esters, 1,3-diacylglycerols and 1-monoacylglycerols do not induce mitochondrial Ca2+ efflux. Ca2+-loaded mitoplasts devoid of outer mitochondrial membrane also exhibit DAGs-induced Ca2+ release, indicating that this mechanism resides at the inner mitochondrial membrane. Patch clamping brain mitoplasts reveal DAGs-induced slightly cation-selective channel activity that is insensitive to bongkrekic acid and abolished by La3+. The presence of a second messenger-sensitive Ca2+ release mechanism in mitochondria could have an important impact on intracellular Ca2+ homeostasis.  相似文献   
52.
Phosphatidylcholine (PC)-specific phospholipase D (PC-PLD) and phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) activities have been detected in Uronema marinum. Partial purification of PC-PLC revealed that two distinct forms of PC-PLC (named as mPC-PLC and cPC-PLC) were existed in membrane and cytosol fractions. The two PC-PLC enzymes showed the preferential hydrolyzing activity for PC with specific activity of 50.4 for mPC-PLC and 28.3 pmol/min/mg for cPC-PLC, but did not hydrolyze phosphatidylinositol or phosphatidylethanolamine. However, the biochemical characteristics and physiological roles of both enzymes were somewhat different. mPC-PLC had a pH optimum in the acidic region at around, pH 6.0, and required approximately 0.4 mM Ca2+ and 2.5 mM Mg2+ for maximal activity. cPC-PLC had a pH optimum in the neutral region at around, pH 7.0, and required 1.6 mM Ca2+ and 2.5 mM Mg2+ for maximal activity. cPC-PLC, but not mPC-PLC, showed a dose-dependent inhibitory effect on the luminal-enhanced chemiluminescence (CL) responses and the viability of zymosan-stimulated phagocytes of olive flounder, indicating that cPC-PLC may contribute to the parasite evasion against the host immune response. Our results suggest that U. marinum contains PC-PLD as well as two enzymatically distinct PC-PLC enzymes, and that mPC-PLC may play a role in the intercellular multiplication of U. marinum and cPC-PLC acts as a virulence factor, serving to actively disrupt the host defense mechanisms.  相似文献   
53.
Human retinal pigmented epithelial cell (hRPE) proliferation plays a significant role in various proliferative diseases associated to the retina that leads to loss of vision, such as proliferative vitreoretinopathy. In the current study, the role of the bovine vitreous lipid factor (bVLF) in hRPE cell proliferation has been investigated. bVLF is a bioactive lipid isolated from the bovine vitreous body with strong Ca(2+)-mobilizing activity in fibroblast. In the first approach, the effects of bVLF on Ca(2+)-mobilizing activity were investigated in hRPE. The results showed that bVLF induced, in a dose-dependent manner, a Ca(2+) mobilization from PA-sensitive intracellular stores [non-Ins(1,4,5)P(3)-sensitive stores], in which extracellular Ca(2+) participated. The increase in intracellular Ca(2+) was associated with a dose-dependent inhibiting effect on cell proliferation. At a dose of 10 microg/mL, bVLF caused a 26% or a 44% inhibition in hRPE cell proliferation during the 3- or the 6-day culture periods, respectively. These effects appear to be specific in hRPE cells, since EFGR-T17 fibroblast cells treated with equivalent amounts of bVLF did not show any inhibiting effects. This inhibitory action was not associated to apoptotic/necrotic processes. Furthermore, bVLF inhibited EGF-, bFGF-, IGF-I-, PDGF-, HGF- and VEGF-induced proliferation of the hRPE cells. Moreover, this inhibitory response was also observed in FBS-induced hRPE cell proliferation. bVLF, at a concentration of 10 microg/mL, induced 16% inhibition of proliferation during a culture period of 3 days. This inhibitory action was greater during the 6-day culture period, exceeding 40%. With regard to this action, the results showed that bVLF has a potent inhibitory effect on ERK1/2 activation, and plays a key role in the control of hRPE cell proliferation. These observations contribute to the knowledge of inhibitory factors responsible for keeping antiproliferative environment that preserve the RPE-associated activities in normal states. It advances the interesting possibility that this factor or a factor with characteristics common to bVLF might be involved in the pathogenesis of abnormal proliferative eye processes.  相似文献   
54.
The pituitary gland dynamically changes its hormone output under various pathophysiological conditions. One of the pathways implicated in the regulatory mechanism of this gland is a dopaminergic system that operates the phosphoinositide (PI) cycle to transmit downstream signal through second messengers. We have previously shown that diacylglycerol kinase β (DGKβ) is coexpressed with dopamine D1 and D2 receptors in medium spiny neurons of the striatum, suggesting a plausible implication of DGKβ in dopaminergic transmission. However, it remains elusive whether DGKβ is involved in the dopaminergic system in the pituitary gland. The aim of this study is to investigate the expression and localization of DGK in the pituitary gland, together with the molecular components involved in the PI signaling cascade, including dopamine receptors, phospholipase C (PLC), and a major downstream molecule, protein kinase C (PKC). Here we show that DGKβ and the dopamine D2 receptor are coexpressed in the intermediate lobe and localize to the plasma membrane side by side. In addition, we reveal that PLCβ4 and PKCα are the subtypes expressed in the intermediate lobe among those families. These findings will substantiate and further extend our understanding of the molecular-anatomical pathway of PI signaling and the functional roles of DGK in the pituitary intermediate lobe. (J Histochem Cytochem 58:119–129, 2010)  相似文献   
55.
Nuclear phosphoinositide kinases and inositol phospholipids   总被引:5,自引:0,他引:5  
The presence of inositol phospholipids in the nuclei of mammalian cells has by now been well established, as has the presence of the enzymes responsible for their metabolism. However, our understanding of the role of these nuclear phosphoinositides in regulating cellular events has lagged far behind that for its cytosolic counterpart. It is clear, though, that the nuclear phosphoinositide pool is independent of the cytosolic pool and is, therefore, likely to be regulating a unique set of cellular events. As with its cytosolic phosphoinositides, many nuclear phosphoinositides and their metabolic enzymes are located at distinct sub-cellular structures. This arrangement spatially limits the production and activity of inositol phospholipids and is believed to be a major mechanism for regulating their function. Here, we will introduce the components of nuclear inositol phospholipid signal transduction and discuss how their spatial arrangement may dictate which nuclear functions they are modulating.  相似文献   
56.
Acyl-coenzyme A:diacylglycerol transferase (DGAT), fatty acid synthetase (FAS), and LPL are three enzymes important in adipose tissue triglyceride accumulation. To study the relationship of DGAT1, FAS, and LPL with insulin, we examined adipose mRNA expression of these genes in subjects with a wide range of insulin sensitivity (SI). DGAT1 and FAS (but not LPL) expression were strongly correlated with SI. In addition, the expression of DGAT1 and FAS (but not LPL) were higher in normal glucose-tolerant subjects compared with subjects with impaired glucose tolerance (IGT) (P < 0.005). To study the effects of insulin sensitizers, subjects with IGT were treated with pioglitazone or metformin for 10 weeks, and lipogenic enzymes were measured in adipose tissue. After pioglitazone treatment, DGAT1 expression was increased by 33 +/- 10% (P < 0.05) and FAS expression increased by 63 +/- 8% (P < 0.05); however, LPL expression was not altered. DGAT1, FAS, and LPL mRNA expression were not significantly changed after metformin treatment. The treatment of mice with rosiglitazone also resulted in an increase in adipose expression of DGAT1 by 2- to 3-fold, as did the treatment of 3T3 F442A adipocytes in vitro with thiazolidinediones. These data support a more global concept suggesting that adipose lipid storage functions to prevent peripheral lipotoxicity.  相似文献   
57.
A proteomics approach was used to search for novel phospholipid binding proteins in Saccharomyces cerevisiae. Phospholipids were immobilized on a solid support and the lipids were probed with soluble yeast protein extracts. From this, the phosphatidic acid binding proteins were eluted and identified by mass spectrometry. Thirteen proteins were identified and 11 of these were previously unknown lipid binding proteins. The protein-lipid interactions identified would not have been predicted using bioinformatics approaches as none possessed a known lipid binding motif. A subset of the identified proteins was purified to homogeneity and determined to directly bind phospholipids immobilized on a solid support or organized into liposomes. This simple approach could be systematically applied to perform an exhaustive screen for soluble lipid binding proteins in S. cerevisiae or other organisms.  相似文献   
58.
Liu Y  Taylor CW 《FEBS letters》2006,580(17):4114-4120
Arachidonic acid (AA) regulates many aspects of vascular smooth muscle behaviour, but the mechanisms linking receptors to AA release are unclear. In A7r5 vascular smooth muscle cells pre-labelled with (3)H-AA, vasopressin caused a concentration-dependent stimulation of 3H-AA release that required phospholipase C and an increase in cytosolic [Ca2+]. Ca2+ release from intracellular stores and Ca2+ entry via L-type channels or the capacitative Ca2+ entry pathway were each effective to varying degrees. Selective inhibitors of PLA2 inhibited the 3H-AA release evoked by vasopressin, though not the underlying Ca2+ signals, and established that cPLA2 mediates the release of AA. We conclude that in A7r5 cells vasopressin stimulates AA release via a Ca2+-dependent activation of cPLA2.  相似文献   
59.
The liver possesses the capacity to restore its function and mass after injury. Liver regeneration is controlled through complicated mechanisms, in which the phosphoinositide (PI) cycle is shown to be activated in hepatocytes. Using a rat partial hepatectomy (PH) model, the authors investigated the expression of the diacylglycerol kinase (DGK) family, a key enzyme in the PI cycle, which metabolizes a lipid second-messenger diacylglycerol (DG). RT-PCR analysis shows that DGKζ and DGKα are the major isozymes in the liver. Results showed that in the process of regeneration, the DGKζ protein, which is detected in the nucleus of a small population of hepatocytes in normal liver, is significantly increased in almost all hepatocytes. However, the mRNA levels remain largely unchanged. Double labeling with bromodeoxyuridine (BrdU), an S phase marker, reveals that DGKζ is expressed independently of DNA synthesis or cell proliferation. However, DGKα protein localizes to the cytoplasm in normal and regenerating livers, but immunoblot analysis reveals that the expected (80 kDa) and the lower (70 kDa) bands are detected in normal liver, whereas at day 10 after PH, the expected band is solely recognized, showing a different processing pattern of DGKα in liver regeneration. These results suggest that DGKζ and DGKα are involved, respectively, in the nucleus and the cytoplasm of hepatocytes in regenerating liver.  相似文献   
60.
Niacin reduces plasma triglycerides, but it may increase free fatty acids and insulin resistance during long-term treatment. We examined the effect of extended-release niacin on liver fat content in Chinese patients with dyslipidemia and whether the common diacylglycerol acyltransferase-2 (DGAT2) polymorphisms influenced this effect. The 39 patients (baseline liver fat content: 12.8 ± 7.6%, triglycerides: 3.30 ± 1.67 mmol/l) were treated with niacin, gradually increasing the dose to 2 g/day for a total of 23 weeks. The liver fat content and visceral/subcutaneous fat was measured before and after treatment. Subjects were genotyped for the DGAT2 rs3060 and rs101899116 polymorphisms. There were significant (P < 0.001) reductions in plasma triglycerides (-34.9 ± 37.6%), liver fat content (-47.2 ± 32.8%), and visceral fat (-6.3 ± 15.8%, P < 0.05) after niacin treatment. Mean body weight decreased by 1.46 ± 2.7% (1.17 ± 2.44 kg, P < 0.001) during the study, but liver fat changes remained significant after adjustment for age, gender, and body weight changes [mean absolute change (95% CI): -6.1% (-8.0, -4.3), P < 0.001]. The DGAT2 variant alleles were associated with a smaller reduction in liver fat content in response to niacin after adjustment for other covariates (P < 0.01). These findings suggest that niacin treatment may reduce liver fat content in Chinese patients with dyslipidemia and that the mechanism may involve inhibition of DGAT2. However, the findings might have been confounded by the small but significant reductions in body weight during the study. Future large randomized controlled trials are needed to verify these findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号