首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   55篇
  国内免费   18篇
  2024年   1篇
  2023年   7篇
  2022年   7篇
  2021年   7篇
  2020年   8篇
  2019年   20篇
  2018年   19篇
  2017年   16篇
  2016年   17篇
  2015年   14篇
  2014年   25篇
  2013年   29篇
  2012年   14篇
  2011年   13篇
  2010年   23篇
  2009年   11篇
  2008年   17篇
  2007年   20篇
  2006年   15篇
  2005年   18篇
  2004年   19篇
  2003年   11篇
  2002年   13篇
  2001年   6篇
  2000年   7篇
  1999年   13篇
  1998年   9篇
  1997年   7篇
  1996年   4篇
  1995年   8篇
  1994年   3篇
  1993年   8篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有446条查询结果,搜索用时 15 毫秒
81.
Herein, a novel and effective method to prepare n‐doped MoOx films with highly improved conductivity is reported. The MoOx films are readily prepared by spin‐coating an aqueous solution containing ammonium molybdate tetrahydrate and vitamin C (VC). As confirmed by UV–vis absorption, X‐ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy measurements, Mo(VI) is partially reduced to Mo(V) by VC, resulting in the n‐doping of MoOx. The conductivity of the n‐doped MoOx (H:V‐Mo) film can be enhanced by four orders of magnitude compared to pristine MoOx (H‐Mo), that is, from 1.2 × 10−7 to 1.1 × 10−3 S m−1. The device using a 10 nm H:V‐Mo anode interlayer (AIL) exhibits comparable photovoltaic performance to a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐modified device. More importantly, the hole transport and collection properties of the H:V‐Mo AILs show outstanding tolerance to thickness variation, that is, with increasing thickness of the H:V‐Mo AIL from 10 to 150 nm, the V oc and fill factor values of the devices remain unchanged. The device based on the blade‐coated H:V‐Mo AIL also has a high power conversion efficiency of 10.6%. To the best of the authors' knowledge, this work demonstrates the first example to prepare metal oxide AILs with outstanding tolerance to thickness, which is promising for the future large‐area manufacturing.  相似文献   
82.
The efficient evolution of hydrogen through electrocatalysis is considered a promising approach to the production of clean hydrogen fuel. Platinum (Pt)‐based materials are regarded as the most active hydrogen evolution reaction (HER) catalysts. However, the low abundance and high cost of Pt hinders the large‐scale application of these catalysts. Active, inexpensive, and earth‐abundant electrocatalysts to replace Pt‐based materials would be highly beneficial to the production of cost‐effective hydrogen energy. Herein, a novel organoimido‐derivatized heteropolyoxometalate, Mo4‐CNP, is designed as a precursor for electrocatalysts of the HER. It is demonstrated that the carbon, nitrogen, and phosphorus sources derived from the Mo4‐CNP molecules lead to in situ confined carburization, phosphorization, and chemical doping on an atomic scale, thus forming nitrogen‐doped porous molybdenum carbide and phosphide hybrids, which exhibit remarkable electrocatalytic activity for the HER. Such an organically functionalized polyoxometalate‐assisted strategy described here provides a new perspective for the development of highly active non‐noble metal electrocatalysts for hydrogen evolution.  相似文献   
83.
2D transition metal‐dichalcogenides are emerging as efficient and cost‐effective electrocatalysts for the hydrogen evolution reaction (HER). However, only the edge sites of their trigonal prismatic phase show HER‐electrocatalytic properties, while the basal plane, which is absent of defective/unsaturated sites, is inactive. Herein, the authors tackle the key challenge of increasing the number of electrocatalytic sites by designing and engineering heterostructures composed of single‐/few‐layer MoSe2 flakes and carbon nanomaterials (graphene or single‐wall carbon nanotubes) produced by solution processing. The electrochemical coupling between the materials that comprise the heterostructure effectively enhances the HER‐electrocatalytic activity of the native MoSe2 flakes. The optimization of the mass loading of MoSe2 flakes and their electrode assembly via monolithic heterostructure stacking provides a cathodic current density of 10 mA cm?2 at overpotential of 100 mV, a Tafel slope of 63 mV dec?1, and an exchange current density (j0) of 0.203 µA cm?2. In addition, thermal and chemical treatments are exploited to texturize the basal planes of the MoSe2 flakes (through Se‐vacancies creation) and to achieve in situ semiconducting‐to‐metallic phase conversion, respectively, thus they activate new HER‐electrocatalytic sites. The as‐engineered electrodes show a 4.8‐fold enhancement of j0 and a decrease in the Tafel slope to 54 mV dec?1.  相似文献   
84.
An efficient, durable, and low‐cost hydrogen evolution reaction (HER) catalyst is an essential requirement for practical hydrogen production. Herein, an effective approach to facilitate the HER kinetics of molybdenum carbide (Mo2C) electrocatalysts is presented by tuning its electronic structure through atomic engineering of nitrogen implantation. Starting from the organoimido‐derivatized polyoxometalate nanoclusters with inherent Mo? N bonds, the formation of N‐implanted Mo2C (N@Mo2C) nanocrystals with perfectly adjustable amounts of N atoms is demonstrated. The optimized N@Mo2C electrocatalyst exhibits remarkable HER performance and good stability over 20 h in both acid and basic electrolytes. Further density functional theory calculations show that engineering suitable nitrogen atoms into Mo2C can regulate its electronic structure well and decrease Mo? H strength, leading to a great enhancement of the HER activity. It could be believed that this ligand‐controlled atomic engineering strategy might influence the overall catalyst design strategy for engineering the activation sites of nonprecious metal catalysts for energy conversions.  相似文献   
85.
Clean hydrogen production is highly promising to meet future global energy demands. The design of earth‐abundant materials with both high activity for hydrogen evolution reaction (HER) and electrochemical stability in both acidic and alkaline environments is needed, in order to enable practical applications. Here, the authors report a non‐noble 3d metal Cl‐chemical doping of liquid phase exfoliated single‐/few‐layer flakes of MoSe2 for creating MoSe2/3d metal oxide–hydr(oxy)oxide hybrid HER‐catalysts. It is proposed that the electron‐transfer from MoSe2 nanoflakes to metal cations and the chlorine complexation‐induced neutralization, as well as the in situ formation of metal oxide–hydr(oxy)oxides on the MoSe2 nanoflakes' surface, tailor the proton affinity of the catalysts, increasing the number and HER‐kinetics of their active sites in both acidic and alkaline electrolytes. The electrochemical coupling between doped‐MoSe2/metal oxide–hydr(oxy)oxide hybrids and single‐walled carbon nanotubes heterostructures further accelerates the HER process. Lastly, monolithic stacking of multiple heterostructures is reported as a facile electrode assembly strategy to achieve overpotential for a cathodic current density of 10 mA cm?2 of 0.081 and 0.064 V in 0.5 m H2SO4 and 1 m KOH, respectively. This opens up new opportunities to address the current density versus overpotential requirements targeted in pH‐universal hydrogen production.  相似文献   
86.
A gene homologous tomoaA, the gene responsible for the expression of a protein involved in an early step in the synthesis of the molybdopterin cofactor ofEscherichia coli, was found to be located 2.7-kb upstream of the nicotine dehydrogenase (ndh) operon on the catabolic plasmid pAO1 ofArthrobacter nicotinovorans. The MoaA protein, containing 354 amino acids, migrated on an SDS-polyacrylamide gel with an apparent molecular weight of 40,000, in good agreement with the predicted molecular weight of 38,880. The pAO1-encodedmoaA gene fromA. nicotinovorans was expressed inE. coli as an active protein that functionally complementedmoaA mutants. Its reduced amino acid sequence shows 43% identity to theE. coli MoaA, 44% to the NarAB gene product fromBacillus subtilis, and 42% to the gene product of two contiguous ORFs fromMethanobacterium formicicum. N-terminal sequences, including the motif CxxxCxYC, are conserved among the MoaA and NarAB proteins. This motif is also present in proteins involved in PQQ cofactor synthesis in almost all the NifB proteins reported so far and in thefixZ gene product fromRhizobium leguminosarum. Mutagenesis of any of these three conserved cysteine residues to serine abolished the biological activity of MoaA, while substitution of the tyrosine by either serine, phenylalanine, or alanine did not alter the capacity of the protein to complement themoaA mutation inE. coli. A second Cys-rich domain with the motif FCxxC(13x)C is found close to the C-terminus of MoaA and NarAB proteins. These two Cys-rich sequences may be involved in the coordination of a metal ions. The pAO1 copy ofmoaA may not be unique in theA. nicotinovorans genome since the molybdopterin cofactor oxidation products were detected in cell extracts from a plasmidless strain.  相似文献   
87.
Porphobilinogen deaminase (hydroxymethylbilane synthase) and uroporphyrinogen III synthase (uroporphyrinogen III cosynthase) catalyze the transformation of four molecules of porphobilinogen, via the 1-hydroxymethylbilane, preuroporphyrinogen, into uroporphyrinogen III. A combination of studies involving protein chemistry, molecular biology, site-directed mutagenesis, and the use of chemically synthesized substrate analogs and inhibitors is helping to unravel the complex mechanisms by which the two enzymes function. The determination of the X-ray structure ofE. coli porphobilinogen deaminase at 1.76 Å resolution has provided the springboard for the design of further experiments to elucidate the precise mechanism for the assembly of both the dipyrromethane cofactor and the tetrapyrrole chain. The human deaminase structure has been modeled from theE. coli structure and has led to a molecular explanation for the disease acute intermittent porphyria. Molecular modeling has also been employed to simulate the spiro-mechanism of uroporphyrinogen III synthase.  相似文献   
88.
Regulators of complement activation (RCA) inhibit complement‐induced immune responses on healthy host tissues. We present crystal structures of human RCA (MCP, DAF, and CR1) and a smallpox virus homolog (SPICE) bound to complement component C3b. Our structural data reveal that up to four consecutive homologous CCP domains (i–iv), responsible for inhibition, bind in the same orientation and extended arrangement at a shared binding platform on C3b. Large sequence variations in CCP domains explain the diverse C3b‐binding patterns, with limited or no contribution of some individual domains, while all regulators show extensive contacts with C3b for the domains at the third site. A variation of ~100° rotation around the longitudinal axis is observed for domains binding at the fourth site on C3b, without affecting the overall binding mode. The data suggest a common evolutionary origin for both inhibitory mechanisms, called decay acceleration and cofactor activity, with variable C3b binding through domains at sites ii, iii, and iv, and provide a framework for understanding RCA disease‐related mutations and immune evasion.  相似文献   
89.
Legumes capable of fixing atmospheric N2 are abundant and diverse in many tropical forests, but the factors determining ecological patterns in fixation are unresolved. A long‐standing idea is that fixation depends on soil nutrients (N, P or Mo), but recent evidence shows that fixation may also differ among N2‐fixing species. We sampled canopy‐height trees across five species and one species group of N2‐fixers along a landscape P gradient, and manipulated P and Mo to seedlings in a shadehouse. Our results identify taxonomy as the major determinant of fixation, with P (and possibly Mo) only influencing fixation following tree‐fall disturbances. While 44% of trees did not fix N2, other trees fixed at high rates, with two species functioning as superfixers across the landscape. Our results raise the possibility that fixation is determined by biodiversity, evolutionary history and species–specific traits (tree growth rate, canopy stature and response to disturbance) in the tropical biome.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号