首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   56篇
  国内免费   18篇
  446篇
  2024年   1篇
  2023年   7篇
  2022年   7篇
  2021年   7篇
  2020年   8篇
  2019年   20篇
  2018年   19篇
  2017年   16篇
  2016年   17篇
  2015年   14篇
  2014年   25篇
  2013年   29篇
  2012年   14篇
  2011年   13篇
  2010年   23篇
  2009年   11篇
  2008年   17篇
  2007年   20篇
  2006年   15篇
  2005年   18篇
  2004年   19篇
  2003年   11篇
  2002年   13篇
  2001年   6篇
  2000年   7篇
  1999年   13篇
  1998年   9篇
  1997年   7篇
  1996年   4篇
  1995年   8篇
  1994年   3篇
  1993年   8篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有446条查询结果,搜索用时 15 毫秒
401.
The study was conducted at three locations in the Savinjska region of Slovenia, where soil is contaminated with heavy metals due to the zinc industry (Cinkarna Celje). In Ponikva the soil to a depth of 30 cm contains 0.8 mg kg(-1) Cd, 32.2 mg kg(-1) Pb, and 86 mg Zn kg(-1), in Medlog 1.4 mg kg(-1) Cd, 37.4 mg kg(-1) Pb, and 115 mg kg(-1) Zn and in Skofja vas 10.9 mg kg(-1) Cd, 239.7 mg kg(-1) Pb, and 1356 mg kg(-1) Zn. The pH at the selected sites was between 7.3 and 7.6. In the beginning of September 2006 two hybrids of Brassica napus L. var. napus, PR45 D01 and PR46 W31 suitable for production of biodiesel obtained from Pioneer Seeds Holding GmbH, were sown. After 96 days juvenile and after 277 days mature plants were collected. Parts of plants (root, shoot and seed) were separated and Cd, Pb, Zn, Mo, and S determined by ultra-trace ICP-MS. We compared the uptake of Cd, Pb, Zn, Mo and S in different parts of juvenile and mature plants of the two different hybrids, TF (translocation factor), BAF (bioaccumulation factor), and PP (phytoextraction potential) were calculated. The mature hybrid PR46 W31 had higher shoot/root ratio and higher PP for metals (Cd, Pb, and Zn) and lower PP for the micronutrient (Mo) and macronutrient (S) on the polluted site. The study demonstrated the potential use of oilseed rape on multiply polluted soils for production of 1st and 2nd generation biofuels. The potential restoration of degraded land could also disburden the use of agricultural land.  相似文献   
402.
Under anaerobic conditions in glucose–yeast extract medium with phosphate, Enterobacter cloacae strain 48 grew well and reduced Mo6+, to Mo5+. The activity of Mo6+-reductase was measured by the formation of molybdenum blue (complexation between Mo5+ and phosphate ion). Models based on logistic and Luedeking–Piret equations were found adequate to describe the growth of E. cloacae and Mo6+-reductase production. Mo6+-reductase production was found to be a growth-associated process. Washed intact cells, membrane fraction (after disruption using a sonicator) and fluid supernatant (after cell disruption) were able to reduce Mo6+. However, Mo6+-reductase activity was much lower in the supernatant fluid. The (NH4)2SO4-precipitated Mo6+-reductase extract from fluid supernatant was assayed for its properties. The optimum pH and temperature for Mo6+-reductase activity were 8 and 30°C, respectively. The apparent Michaelis–Menten constant (Km) and a maximum velocity (Vmax) were 16.5mm and 0.0192mol/ml.h, respectively.  相似文献   
403.
Field experiments were conducted during the rainy reasons of 1989, 1990 and 1991 on an acid sandy soil in Niger, West Africa, to assess the effect of millet straw application (+CR) on growth and N2 fixation of groundnut (Arachis hypogaea L.).Three years of +CR (4 t ha–1 yr–1) increased symbiotic N2 fixation, total dry matter production (haulm plus pods) by 83% and total nitrogen (N) accumulation by 100%. Concentration of N in the shoot dry matter and total N in the soil were only slightly affected by the +CR treatment.Crop residue application increased the concentration of potassium (K) and molybdenum (Mo) and decreased the concentrations of aluminium (Al) and manganese (Mn) distinctly, both in the plant (shoot and nodule dry matter) and in the soil.The increase in dry matter production and N uptake was mainly due to improved N2 fixation reflected by enhanced formation and growth of nodules as well as nitrogenase activity. This was attributed to improved chemical soil conditions, particularly to the higher availability of Mo and the lowered content of available Al and Mn.Although with the application of 4 t CR ha–1, 60 kg K were supplied, increased growth could not be attributed to the additional supply of K.ICRISAT Journal Article No. 1229.ICRISAT Journal Article No. 1229.  相似文献   
404.
de Oliveira  W.S.  Meinhardt  L.W.  Sessitsch  A.  Tsai  S.M. 《Plant and Soil》1998,204(1):107-115
Poor bean yields in the Cunha region of the Mata Atlântica ecosystem in the state of São Paulo, Brazil, are associated with low agronomic inputs, plant disease, and soil erosion. To identify sustainable farming practices that increase production and maximize biological N2 fixation (BNF), the effects of soil fertility and plant cultivar on seed yield and root nodule formation were measured under standard agronomic practices. Results from 16 sites showed that fertilizing with lime and molybdenum increased seed yields to 370% for the landrace Serro Azul. In addition to increased yields, plants grown with fertilizer had more nodules. Marked strains of Rhizobium tropici were tested under controlled environments. An indicator strain of Rhizobium containing the gusA marker gene was used. Our results verify that the indicator strain CM-255 GusA+Hup+ had a high capacity to associate with the five bean varieties tested. Fertilization with P, K, S + micronutrients and liming were essential for better nodulation by the indicator strain. Under low fertility conditions, the landrace variety Serro Azul was poorly nodulated, when associated with native strains or with the indicator strain. However, under better soil fertility conditions, nodulation of Serro Azul by the marked Rhizobium strain was increased. The commercial variety Carioca 80SH showed no increase in nodulation (nodule number).  相似文献   
405.
Complex protein interaction networks constitute plant metabolic and signaling systems. Bimolecular fluorescence complementation (BiFC) is a suitable technique to investigate the formation of protein complexes and the localization of protein-protein interactions in planta. However, the generation of large plasmid collections to facilitate the exploration of complex interaction networks is often limited by the need for conventional cloning techniques. Here, we report the implementation of a GATEWAY vector system enabling large-scale combination and investigation of candidate proteins in BiFC studies. We describe a set of 12 GATEWAY-compatible BiFC vectors that efficiently permit the combination of candidate protein pairs with every possible N-or C-terminal sub-fragment of S(CFP)3A or Venus, respectively, and enable the performance of multicolor BiFC (mcBiFC). We used proteins of the plant molybdenum metabolism, in that more than 20 potentially interacting proteins are assumed to form the cellular molybdenum network, as a case study to establish the functionality of the new vectors. Using these vectors, we report the formation of the molybdopterin synthase complex by interaction of Arabidopsis proteins Cnx6 and Cnx7 detected by BiFC as well as the simultaneous formation of Cnx6/Cnx6 and Cnx6/Cnx7 complexes revealed by mcBiFC. Consequently, these GATEWAY-based BiFC vector systems should significantly facilitate the large-scale investigation of complex regulatory networks in plant cells.  相似文献   
406.
To explore whether the generation of new protein folds could be linked to metallic cofactor recruitment, we identified the oldest examples of folds for manganese, iron, zinc, and copper proteins by analyzing their fold‐domain mapping patterns. We discovered that the generation of these folds was tightly coupled to corresponding metals. We found that the emerging order for these folds, i.e., manganese and iron protein folds appeared earlier than zinc and copper counterparts, coincides with the putative bioavailability of the corresponding metals in the ancient anoxic ocean. Therefore, we conclude that metallic cofactors, like organic cofactors, play an evolutionary role in the formation of new protein folds. This link could be explained by the emergence of protein structures with novel folds that could fulfill the new protein functions introduced by the metallic cofactors. These findings not only have important implications for understanding the evolutionary mechanisms of protein architectures, but also provide a further interpretation for the evolutionary story of superoxide dismutases.  相似文献   
407.
New ammonium derivatives of peroxo-carboxylato molybdenum(VI) complexes of general formula (NH4)2[MoO(O2)2(HxL)] · nH2O with L=oxalate (ox), citrate (cit), tartrate (tart), glycolate (glyc) and malate (mal) and (NH4)2[MoO2(O2)(L)] with L=oxalate (ox) have been prepared and characterized on the basis of elemental and thermal analysis as well as by IR and 13C NMR spectroscopy. These last two spectroscopic methods have been used to suggest the coordination mode of the ligand in the complexes. The X-ray crystal structures of the compounds (NH4)2[Mo2O2(O2)2(OH)2(ox)2], (NH4)2[MoO(O2)2(ox)] and (NH4)2[MoO(O2)2(glyc)] · 0.5EtOH have been determined, all showing a sevenfold-coordinated Mo atom with bidentate peroxides and carboxylate ligands.  相似文献   
408.
Accumulation of molybdenum cofactor (Moco) in wheat seeds depends on plant ploidy and appears to be a genetically predetermined trait. The level of Moco in the low productive diploid is 2.5–4.0 times greater than that in the evolutionary younger and more productive hexaploid. The deficit of water and high air temperature induced a sharp rise (14 to 64 times) in the Moco content in the seeds, irrespective of the level of ploidy. Apparently, this is a nonspecific adaptive response of wheat to the adverse conditions.  相似文献   
409.
410.
Metabolic networks adapt to changes in their environment by modulating the activity of their enzymes and transporters; often by changing their abundance. Understanding such quantitative changes can shed light onto how metabolic adaptation works, or how it can fail and lead to a metabolically dysfunctional state. We propose a strategy to quantify metabolic protein requirements for cofactor-utilising enzymes and transporters through constraint-based modelling. The first eukaryotic genome-scale metabolic model to comprehensively represent iron metabolism was constructed, extending the most recent community model of the Saccharomyces cerevisiae metabolic network. Partial functional impairment of the genes involved in the maturation of iron-sulphur (Fe-S) proteins was investigated employing the model and the in silico analysis revealed extensive rewiring of the fluxes in response to this functional impairment, despite its marginal phenotypic effect. The optimal turnover rate of enzymes bearing ion cofactors can be determined via this novel approach; yeast metabolism, at steady state, was determined to employ a constant turnover of its iron-recruiting enzyme at a rate of 3.02 × 10 −11 mmol·(g biomass) −1·h −1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号