首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14022篇
  免费   1351篇
  国内免费   938篇
  16311篇
  2024年   51篇
  2023年   350篇
  2022年   367篇
  2021年   480篇
  2020年   585篇
  2019年   741篇
  2018年   718篇
  2017年   598篇
  2016年   697篇
  2015年   623篇
  2014年   690篇
  2013年   1523篇
  2012年   583篇
  2011年   615篇
  2010年   538篇
  2009年   585篇
  2008年   684篇
  2007年   658篇
  2006年   629篇
  2005年   566篇
  2004年   542篇
  2003年   509篇
  2002年   473篇
  2001年   329篇
  2000年   315篇
  1999年   246篇
  1998年   252篇
  1997年   225篇
  1996年   169篇
  1995年   146篇
  1994年   124篇
  1993年   100篇
  1992年   103篇
  1991年   58篇
  1990年   49篇
  1989年   39篇
  1988年   29篇
  1987年   25篇
  1986年   15篇
  1985年   27篇
  1984年   52篇
  1983年   36篇
  1982年   45篇
  1981年   35篇
  1980年   22篇
  1979年   13篇
  1978年   16篇
  1977年   14篇
  1975年   6篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
The flexibility of different regions of HIV-1 protease was examined by using a database consisting of 73 X-ray structures that differ in terms of sequence, ligands or both. The root-mean-square differences of the backbone for the set of structures were shown to have the same variation with residue number as those obtained from molecular dynamics simulations, normal mode analyses and X-ray B-factors. This supports the idea that observed structural changes provide a measure of the inherent flexibility of the protein, although specific interactions between the protease and the ligand play a secondary role. The results suggest that the potential energy surface of the HIV-1 protease is characterized by many local minima with small energetic differences, some of which are sampled by the different X-ray structures of the HIV-1 protease complexes. Interdomain correlated motions were calculated from the structural fluctuations and the results were also in agreement with molecular dynamics simulations and normal mode analyses. Implications of the results for the drug-resistance engendered by mutations are discussed briefly.  相似文献   
102.
Snubnose darters comprise one of the largest subgenera of the percid genus Etheostoma. Many species are described based on differences in male breeding coloration. Few morphological synapomorphies have been proposed for the subgenus and their relatives, making it difficult to delineate monophyletic clades. The phylogenetic relationships of the 20 snubnose darter species of the subgenus Ulocentra and 11 members of its proposed sister subgenus Etheostoma were investigated with partial mitochondrial DNA sequences including 1033 bp encompassing the entire mitochondrial control region, the tRNA-Phe gene, and part of the 12S rRNA gene. Two hypotheses on the relationship and monophyly of the two subgenera were evaluated. Both maximum-parsimony and neighbor-joining analyses supported monophyly of the subgenus Ulocentra and resolved some species-level relationships. The banded darter, E. zonale, and its sister taxon, E. lynceum, were not closely related to the snubnose darters and appear to be diverged from the other members of the subgenus Etheostoma, fitting their former distinction as the recognized subgenus Nanostoma. The sister group to Ulocentra appears to be a restricted species assemblage within the subgenus Etheostoma containing E. blennioides, E. rupestre, E. blennius, and the E. thalassinum species group. The placement of the harlequin darter, E. histrio, is problematic, and it may represent a basal member of Ulocentra or of the restricted subgenus Etheostoma. Despite recent estimates of divergence times between nominal Ulocentra taxa, each species exhibits its own unique set of mtDNA haplotypes, providing no direct evidence for current genetic exchange between species. The nominal taxa of snubnose darters thus appear to be evolving independently from each other and therefore constitute valid species under the Phylogenetic Species Concept.  相似文献   
103.
A terminal alpha1-3 linked Gal or GalNAc sugar residue is the common structure found in several oligosaccharide antigens, such as blood groups A and B, the xeno-antigen, the Forssman antigen, and the isogloboside 3 (iGb3) glycolipid. The enzymes involved in the addition of this residue display strong amino acid sequence similarities, suggesting a common fold. From a recently solved crystal structure of the bovine alpha3-galactosyltransferase complexed with UDP, homology modeling methods were used to build the four other enzymes of this family in their locked conformation. Nucleotide-sugars, the Mn2+ ion, and oligosaccharide acceptors were docked in the models. Nine different amino acid regions are involved in the substrate binding sites. After geometry optimization of the complexes and analysis of the predicted structures, the basis of the specificities can be rationalized. In the nucleotide-sugar binding site, the specificity between Gal or GalNAc transferase activity is due to the relative size of two clue amino acids. In the acceptor site, the presence of up to three tryptophan residues define the complexity of the oligosaccharide that can be specifically recognized. The modeling study helps in rationalizing the crystallographic data obtained in this family and provides insights on the basis of substrate and donor recognition.  相似文献   
104.
Flavoenzymes have been extensively studied for their structural and mechanistic properties because they find potential application as industrial biocatalysts. They are attractive for biocatalysis because of the selectivity, controllability and efficiency of their reactions. Some of these enzymes catalyse the oxidative modification of protein substrates. Among them oxygenases (monoxoygenases and dioxygenases) are of special interest because they are highly entantio as well as regio-selective and can be used for oxyfunctionalisation. Dioxygenase enzymes catalyse oxygenation reactions in which both di-oxygen atoms are incorporated into the product. A dioxygenase enzyme purified from Aspergillus fumigatus MC8 was subjected to protein digestion followed by peptide sequencing. The sequence analysis of the peptide fragments resulted in identifying its match with that of an extracellular dioxygenase sequence from the same species of fungus existing in the protein database. The sequence was submitted to protein homology/analogy recognition engine online server for homology modelling and the 3D structure was predicted. Subsequently, the in silico studies of the enzyme–substrate (protein–ligand) interaction were carried out by using the method of molecular docking simulations wherein the modelled dioxygenase enzyme (protein) was docked with the substrates (ligands), catechin and epicatechin.  相似文献   
105.
Abstract

We compare molecular dynamics simulation results for the properties of liquid water predicted by four novel water potential models. These models are designed as a combination of parameters taken from the dedicated but brittle TIP3P water potential, and the more flexible but less accurate parameterisations such as the Dreiding and Universal force fields. We find that a hybrid of Dreiding and TIP3P delivers the best results, yielding a density, diffusion coefficient and radial distribution function in good agreement with experiment, performing in some respects even better than the dedicated reference TIP3P model. Another Dreiding based force field predicts semi-quantitative results for the water structure and dynamics while the Universal force field based models are incapable of simulating a condensed phase of water at all, continuing to expand indefinitely. These observations are useful for selecting and designing robust water force field parameterisations that can be used for general simulation purposes.  相似文献   
106.
Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal–contaminated soils.  相似文献   
107.
A missense mutation I148M in PNPLA3 (patatin‐like phospholipase domain‐containing 3 protein) is significantly correlated with nonalcoholic fatty liver disease (NAFLD). To glean insights into mutation's effect on enzymatic activity, we performed molecular dynamics simulation and flexible docking studies. Our data show that the size of the substrate‐access entry site is significantly reduced in mutants, which limits the access of palmitic acid to the catalytic dyad. Besides, the binding free energy calculations suggest low affinity for substrate to mutant enzyme. The substrate‐bound system simulations reveal that the spatial arrangement of palmitic acid is distinct in wild‐type from that in mutant. The substrate recognition specificity is lost due to the loop where the I148M mutation was located. Our results provide strong evidence for the mechanism by which I148M affects the enzyme activity and suggest that mediating the dynamics may offer a potential avenue for NAFLD. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
108.
Two samples (YC7, YC27) of Nicotiana tabacum showing leaf curling, vein swelling and enations on undersides of leaves were collected in the Fujian Province of China in 2007. Virus isolates YC7‐1 and YC7‐2 (associated with betasatellite, YC7‐2β) were detected in both samples. The complete DNA‐A sequence of YC7‐1 (FJ869907) comprised 2741 nucleotides (nt). The complete DNA‐A (FJ869908) and betasatellite (FJ869909) sequence of YC7‐2 consisted of 2754 and 1344 nt, respectively. YC7‐1 had the highest nucleotide sequence identity (97.3%) with Papaya leaf curl Guangdong virus (PaLCuGuV‐[CN:Gd2:02], AJ558122). YC7‐2 had the highest sequence identity (90.1%) with Ageratum yellow vein virus (AYVV‐TW[TW:Tai:99], AF307861) and its betasatellite (96.5%) with Ageratum yellow vein betasatellite (AYVB‐[TW:CHu:02], AJ542495). These indicate that YC7‐1 and YC7‐2 are isolates of PaLCuGuV and AYVV, respectively. Symptoms including leaf curling, vein swelling and enations on undersides of leaves were observed in N. tabacum and N. glutinosa when infected by whiteflies with sample YC7 as the viral source under greenhouse conditions. PCR results showed that these infected plants contained both YC7‐1 and YC7‐2/YC7‐2β. To our knowledge, this is the first report of PaLCuGuV and AYVV/AYVB co‐infecting N. tabacum in China.  相似文献   
109.
Apple is known to be susceptible to various virus and viroid pathogens. Symptomatic apple cultivars and rootstocks were collected and analyzed by ELISA and then through RT-PCR. The study reports the presence of Apple mosaic virus (ApMV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple chlorotic leaf spot virus (ACLSV), the major apple viruses and Prunus necrotic ringspot virus (PNRSV), a minor apple virus, at the molecular level in India. Apple scar skin viroid (ASSVd) infection was also confirmed at the molecular level. Sporadic incidences of Tomato ringspot virus and Arabis mosaic virus infections were also detected by ELISA in nursery plants.  相似文献   
110.
Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin’s exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate–aromatic interactions including CH–π and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to β-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号