首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14615篇
  免费   1433篇
  国内免费   929篇
  2024年   38篇
  2023年   343篇
  2022年   322篇
  2021年   502篇
  2020年   618篇
  2019年   780篇
  2018年   755篇
  2017年   627篇
  2016年   729篇
  2015年   655篇
  2014年   733篇
  2013年   1631篇
  2012年   603篇
  2011年   655篇
  2010年   564篇
  2009年   624篇
  2008年   716篇
  2007年   692篇
  2006年   652篇
  2005年   585篇
  2004年   566篇
  2003年   518篇
  2002年   488篇
  2001年   339篇
  2000年   326篇
  1999年   258篇
  1998年   255篇
  1997年   233篇
  1996年   176篇
  1995年   151篇
  1994年   129篇
  1993年   106篇
  1992年   103篇
  1991年   58篇
  1990年   49篇
  1989年   39篇
  1988年   29篇
  1987年   26篇
  1986年   16篇
  1985年   28篇
  1984年   55篇
  1983年   36篇
  1982年   45篇
  1981年   35篇
  1980年   22篇
  1979年   14篇
  1978年   17篇
  1977年   14篇
  1975年   6篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
982.
Insertion sequence (IS) elements are bacterial genes that are able to transpose to different locations in the genome. These elements are often used in molecular epidemiology as genetic markers that track the spread of pathogens. Transposable elements have frequently been described as "selfish DNA" because they facilitate their own transposition, causing damage when they insert into coding regions, while contributing little if anything to the bacterial host. According to this hypothesis, the expansion of copy number of insertion sequences is opposed by negative selection against high copy numbers. From an alternative point of view, we might expect IS elements to intrinsically regulate transposition within cells, thereby limiting damage to their bacterial host. Here, we report evidence that the copy number of IS6110 in Mycobacterium tuberculosis is controlled by selection against the element. We first construct 12 different models of marker change resulting from a combination of possible transposition functions and selective regimes. We then compute the Akaike Information Criterion for each model to identify the models that best explain data consisting of serial isolates of M. tuberculosis genotyped with IS6110. We find that the best performing models all include selection against the accumulation of copies. Specifically, our analysis points to the interaction of separate copies of the element causing lethal effects. We discuss the implications of these findings for genome evolution and molecular epidemiology.  相似文献   
983.
Experimental structural data on the state of substrates bound to class 3 Aldehyde Dehydrogenases (ALDH3A1) is currently unknown. We have utilized molecular mechanics (MM) simulations, in conjunction with new force field parameters for aldehydes, to study the atomic details of benzaldehyde binding to ALDH3A1. Our results indicate that while the nucleophilic Cys243 must be in the neutral state to form what are commonly called near-attack conformers (NACs), these structures do not correlate with increased complexation energy calculated with the MM-Generalized Born Molecular Volume (GBMV) method. The negatively charged Cys243 (thiolate form) of ALDH3A1 also binds benzaldehyde in a stable conformation but in this complex the sulfur of Cys243 is oriented away from benzaldehyde yet yields the most favorable MM-GBMV complexation energy. The identity of the general base, Glu209 or Glu333, in ALDHs remains uncertain. The MM simulations reveal structural and possible functional roles for both Glu209 and Glu333. Structures from the MM simulations that would support either glutamate residue as the general base were further examined with Hybrid Quantum Mechanical (QM)/MM simulations. These simulations show that, with the PM3/OPLS potential, Glu209 must go through a step-wise mechanism to activate Cys243 through an intervening water molecule while Glu333 can go through a more favorable concerted mechanism for the same activation process.  相似文献   
984.
Cieplak M  Hoang TX  Robbins MO 《Proteins》2004,56(2):285-297
The effect of temperature on mechanical unfolding of proteins is studied using a Go-like model with a realistic contact map and Lennard-Jones contact interactions. The behavior of the I27 domain of titin and its serial repeats is contrasted to that of simple secondary structures. In all cases, thermal fluctuations accelerate the unraveling process, decreasing the unfolding force nearly linearly at low temperatures. However, differences in bonding geometry lead to different sensitivity to temperature and different changes in the unfolding pattern. Due to its special native-state geometry, titin is much more thermally and elastically stable than the secondary structures. At low temperatures, serial repeats of titin show a parallel unfolding of all domains to an intermediate state, followed by serial unfolding of the domains. At high temperatures, all domains unfold simultaneously, and the unfolding distance decreases monotonically with the contact order, that is, the sequence distance between the amino acids that form the native contact.  相似文献   
985.
986.
Hsieh MJ  Luo R 《Proteins》2004,56(3):475-486
A well-behaved physics-based all-atom scoring function for protein structure prediction is analyzed with several widely used all-atom decoy sets. The scoring function, termed AMBER/Poisson-Boltzmann (PB), is based on a refined AMBER force field for intramolecular interactions and an efficient PB model for solvation interactions. Testing on the chosen decoy sets shows that the scoring function, which is designed to consider detailed chemical environments, is able to consistently discriminate all 62 native crystal structures after considering the heteroatom groups, disulfide bonds, and crystal packing effects that are not included in the decoy structures. When NMR structures are considered in the testing, the scoring function is able to discriminate 8 out of 10 targets. In the more challenging test of selecting near-native structures, the scoring function also performs very well: for the majority of the targets studied, the scoring function is able to select decoys that are close to the corresponding native structures as evaluated by ranking numbers and backbone Calpha root mean square deviations. Various important components of the scoring function are also studied to understand their discriminative contributions toward the rankings of native and near-native structures. It is found that neither the nonpolar solvation energy as modeled by the surface area model nor a higher protein dielectric constant improves its discriminative power. The terms remaining to be improved are related to 1-4 interactions. The most troublesome term is found to be the large and highly fluctuating 1-4 electrostatics term, not the dihedral-angle term. These data support ongoing efforts in the community to develop protein structure prediction methods with physics-based potentials that are competitive with knowledge-based potentials.  相似文献   
987.
We report an unusual interaction in which a water molecule approaches the heterocyclic nitrogen of tryptophan and histidine along an axis that is roughly perpendicular to the aromatic plane of the side chain. The interaction is distinct from the well-known conventional aromatic hydrogen-bond, and it occurs at roughly the same frequency in protein structures. Calculations indicate that the water-indole interaction is favorable energetically, and we find several cases in which such contacts are conserved among structural orthologs. The indole-water interaction links side chains and peptide backbone in turn regions, connects the side chains in beta-sheets, and bridges secondary elements from different domains. We suggest that the water-indole interaction can be indirectly responsible for the quenching of tryptophan fluorescence that is observed in the folding of homeodomains and, possibly, many other proteins. We also observe a similar interaction between water and the imidazole nitrogens of the histidine side chain. Taken together, these observations suggest that the unconventional water-indole and water-imidazole interactions provide a small but favorable contribution to protein structures.  相似文献   
988.
Formation of hydrophobic contacts across a newly formed interface is energetically favorable. Based on this observation we developed a geometric-hydrophobic docking algorithm that estimates quantitatively the hydrophobic complementarity at protein-protein interfaces. Each molecule to be docked is represented as a grid of complex numbers, storing information regarding the shape of the molecule in the real part and information regarding the hydropathy of the surface in the imaginary part. The grid representations are correlated using fast Fourier transformations. The algorithm is used to compare the extent of hydrophobic complementarity in oligomers (represented by D2 tetramers) and in hetero-dimers of soluble proteins (complexes). We also test the implication of hydrophobic complementarity in distinguishing correct from false docking solutions. We find that hydrophobic complementarity at the interface exists in oligomers and in complexes, and in both groups the extent of such complementarity depends on the size of the interface. Thus, the non-polar portions of large interfaces are more often juxtaposed than non-polar portions of small interfaces. Next we find that hydrophobic complementarity helps to point out correct docking solutions. In oligomers it significantly improves the ranks of nearly correct reassembled and modeled tetramers. Combining geometric, electrostatic and hydrophobic complementarity for complexes gives excellent results, ranking a nearly correct solution < 10 for 5 of 23 tested systems, < 100 for 8 systems and < 1000 for 19 systems.  相似文献   
989.
Hsu ST  Bonvin AM 《Proteins》2004,55(3):582-593
The entry of HIV-1 into a target cell requires gp120 and receptor CD4 as well as coreceptor CCR5/CXCR4 recognition events associated with conformational changes of the involved proteins. The binding of CD4 to gp120 is the initiation step of the whole process involving structural rearrangements that are crucial for subsequent pathways. Despite the wealth of knowledge about the gp120/CD4 interactions, details of the conformational changes occurring at this stage remain elusive. We have performed molecular dynamics simulations in explicit solvent based on the gp120/CD4/CD4i crystal structure in conjunction with modeled V3 and V4 loops to gain insight into the dynamics of the binding process. Three differentiated interaction modes between CD4 and gp120 were found, which involve electrostatics, hydrogen bond and van der Waals networks. A "binding funnel" model is proposed based on the dynamical nature of the binding interface together with a CD4-attraction gradient centered in gp120 at the CD4-Phe43-binding cavity. Distinct dynamical behaviors of free and CD4-bound gp120 were monitored, which likely represent the ground and pre-fusogenic states, respectively. The transition between these states revealed concerted motions in gp120 leading to: i) loop contractions around the CD4-Phe43-insertion cavity; ii) stabilization of the four-stranded "bridging sheet" structure; and iii) translocation and clustering of the V3 loop and the bridging sheet leading to the formation of the coreceptor binding site. Our results provide new insight into the dynamic of the underlying molecular recognition mechanism that complements the biochemical and structural studies.  相似文献   
990.
Sanejouand YH 《Proteins》2004,57(1):205-212
It has recently been shown that disulfide bond Cys130-Cys159 in domain 2 of monomeric CD4 is involved in the formation of CD4 disulfide-bonded dimers on cell surfaces and that it can influence the permissiveness of cells to HIV infection. Because this disulfide bond is buried in the monomer, a large conformational change must take place in order to allow for such disulfide exchange. Using standard optimization techniques, whose efficiency was first checked in the well-documented CD2 case, we have shown that 3D domain swapping is a likely candidate for the conformational change, the hinge loop, or linker, being loop E-F. Indeed, as a consequence of domain swapping, because Cys130 and Cys159 belong to beta-strands C and F, respectively, two disulfide bonds become established between Cys130 in one monomer and Cys159 in the other one. Such a disulfide exchange has already been observed when the nuclear magnetic resonance (NMR) structure of the prion protein was compared to the crystallographic, dimeric one. In both cases, domain swapping implies disulfide exchange because the linker is located in the sequence between two disulfide-bonded cysteines. As in the CD2 case, the proposed configuration of the CD4 dimer is found as a pair of neighboring monomers in the crystallographic unit cell. Moreover, because in this configuration the epitope of monoclonal antibody MT151, which does not compete with Gp120 for CD4 binding, is in the cleft between the pair of CD4 monomers, it is suggested that MT151 achieves its HIV-blocking activity by interfering with the formation of CD4 domain-swapped dimers on cell surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号