首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25424篇
  免费   2455篇
  国内免费   1630篇
  29509篇
  2024年   110篇
  2023年   692篇
  2022年   875篇
  2021年   1198篇
  2020年   1308篇
  2019年   1710篇
  2018年   1417篇
  2017年   1000篇
  2016年   1172篇
  2015年   1218篇
  2014年   1429篇
  2013年   2495篇
  2012年   1092篇
  2011年   1215篇
  2010年   955篇
  2009年   1122篇
  2008年   1190篇
  2007年   1162篇
  2006年   1078篇
  2005年   957篇
  2004年   882篇
  2003年   819篇
  2002年   737篇
  2001年   477篇
  2000年   440篇
  1999年   365篇
  1998年   356篇
  1997年   302篇
  1996年   242篇
  1995年   203篇
  1994年   167篇
  1993年   154篇
  1992年   136篇
  1991年   87篇
  1990年   82篇
  1989年   61篇
  1988年   55篇
  1987年   49篇
  1986年   42篇
  1985年   52篇
  1984年   81篇
  1983年   54篇
  1982年   68篇
  1981年   48篇
  1980年   41篇
  1979年   20篇
  1978年   26篇
  1977年   19篇
  1975年   11篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
991.

Background and Aims

Subtribe Centaureinae appears to be an excellent model group in which to analyse satellite DNA and assess the influence that the biology and/or the evolution of different lineages have had on the evolution of this class of repetitive DNA. Phylogenetic analyses of Centaureinae support two main phases of radiation, leading to two major groups of genera of different ages. Furthermore, different modes of evolution are observed in different lineages, reflected by morphology and DNA sequences.

Methods

The sequences of 502 repeat units of the HinfI satellite DNA family from 38 species belonging to ten genera of Centaureinae were isolated and compared. A phylogenetic reconstruction was carried out by maximum likelihood and Bayesian inference.

Key Results

Up to eight different HinfI subfamilies were found, based on the presence of a set of diagnostic positions given by a specific mutation shared by all the sequences of one group. Subfamilies V–VIII were mostly found in older genera (first phase of radiation in the subtribe, late Oligocene–Miocene), although some copies of these types of repeats were also found in some species of the derived genera. Subfamilies I–IV spread mostly in species of the derived clade (second phase of radiation, Pliocene to Pleistocene), although repeats of these subfamilies exist in older species. Phylogenetic trees did not group the repeats by taxonomic affinity, but sequences were grouped by subfamily provenance. Concerted evolution was observed in HinfI subfamilies spread in older genera, whereas no genetic differentiation was found between species, and several subfamilies even coexist within the same species, in recently radiated groups or in groups with a history of recurrent hybridization of lineages.

Conclusions

The results suggest that the eight HinfI subfamilies were present in the common ancestor of Centaureinae and that each spread differentially in different genera during the two main phases of radiation following the library model of satellite DNA evolution. Additionally, differential speciation pathways gave rise to differential patterns of sequence evolution in different lineages. Thus, the evolutionary history of each group of Centaureinae is reflected in HinfI satellite DNA evolution. The data reinforce the value of satellite DNA sequences as markers of evolutionary processes.  相似文献   
992.
Apple is known to be susceptible to various virus and viroid pathogens. Symptomatic apple cultivars and rootstocks were collected and analyzed by ELISA and then through RT-PCR. The study reports the presence of Apple mosaic virus (ApMV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple chlorotic leaf spot virus (ACLSV), the major apple viruses and Prunus necrotic ringspot virus (PNRSV), a minor apple virus, at the molecular level in India. Apple scar skin viroid (ASSVd) infection was also confirmed at the molecular level. Sporadic incidences of Tomato ringspot virus and Arabis mosaic virus infections were also detected by ELISA in nursery plants.  相似文献   
993.
Incidence of root rot and foliar yellowing, rhizome rot, panicle wilt and stem rot diseases of small cardamom (Elettaria cardamomum Maton) are caused by Fusarium oxysporum Schlecht., and were surveyed in the high ranges of Idukki district, Kerala during 2010–2011. The diseases were noticed in different areas to varying degrees. Root rot was found to be most severe, followed by pseudostem rot, rhizome rot and panicle wilt. The Fusarium infections were prevalent throughout the year (January–December) and varied from 1.5 to 10.6%. Even though the pathogen was isolated from different plant parts, during pathogenicity studies, all the isolates could cross-infect other plant parts too. Twenty different isolates of F. oxysporum were obtained from diseased samples, and five morphologically distinct isolates were analysed with Randomly Amplified Polymorphic DNA (RAPD) markers to study the genetic variability, if any, among them. PCR amplification of total genomic DNA with random oligonucleotide primers generated unique banding patterns, depending upon primers and isolates. Nine oligunucleotide primers were selected for the RAPD assays, which resulted in 221 bands for the five isolates of F. oxysporum. The number of bands obtained was entered into an NTSYS, and the results showed moderate genetic variability among F. oxysporum isolates causing root rot, rhizome rot, panicle wilt and pseudostem rot, collected from different locations. The dendrogram of different isolates into groups resulted in one major cluster at 0.61 similarity index comprising of four isolates (CRT 3, CRR 3, CPW 2 and CSR 1) and one isolate (CRT 5) formed in a separate cluster. Among the five isolates of F. oxysporum, CRT 5 was entirely different from the other four isolates. The isolates also differ according to the geographical area, as revealed from the genetic variability observed in different root rot isolates (CRT 3 and CRT 5). It is inferred that despite moderate variability, F. oxysporum, infecting small cardamom in Idukki district of Kerala, consists of a single clonal lineage.  相似文献   
994.
Bioinformatics tools have facilitated the reconstruction and analysis of cellular metabolism of various organisms based on information encoded in their genomes. Characterization of cellular metabolism is useful to understand the phenotypic capabilities of these organisms. It has been done quantitatively through the analysis of pathway operations. There are several in silico approaches for analyzing metabolic networks, including structural and stoichiometric analysis, metabolic flux analysis, metabolic control analysis, and several kinetic modeling based analyses. They can serve as a virtual laboratory to give insights into basic principles of cellular functions. This article summarizes the progress and advances in software and algorithm development for metabolic network analysis, along with their applications relevant to cellular physiology, and metabolic engineering with an emphasis on microbial strain optimization. Moreover, it provides a detailed comparative analysis of existing approaches under different categories.  相似文献   
995.
UDP-galactose 4′-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD+ cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia.  相似文献   
996.
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号