首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14828篇
  免费   1466篇
  国内免费   996篇
  2024年   40篇
  2023年   359篇
  2022年   303篇
  2021年   531篇
  2020年   633篇
  2019年   798篇
  2018年   761篇
  2017年   636篇
  2016年   747篇
  2015年   670篇
  2014年   768篇
  2013年   1597篇
  2012年   626篇
  2011年   654篇
  2010年   574篇
  2009年   631篇
  2008年   722篇
  2007年   709篇
  2006年   667篇
  2005年   604篇
  2004年   569篇
  2003年   541篇
  2002年   484篇
  2001年   349篇
  2000年   319篇
  1999年   258篇
  1998年   264篇
  1997年   235篇
  1996年   182篇
  1995年   152篇
  1994年   132篇
  1993年   111篇
  1992年   111篇
  1991年   67篇
  1990年   52篇
  1989年   45篇
  1988年   34篇
  1987年   29篇
  1986年   17篇
  1985年   32篇
  1984年   58篇
  1983年   40篇
  1982年   49篇
  1981年   35篇
  1980年   23篇
  1979年   13篇
  1978年   19篇
  1977年   16篇
  1975年   7篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
The data derived from a chloroplast DNA restriction site analysis of subtribeDendrobiinae (Orchidaceae) indicate that extreme vegetative diversification is concentrated in two limited parts of this group. Overlaying the vegetative character states onto the chloroplast DNA cladogram suggests that several xeromorphic, vegetative characters evolved in the lines leading to the above-mentioned clades. Several anatomical characters are also associated with xeromorphy. These vegetative and anatomical characters facilitated the establishment of this group in various dry habitats. On the other hand, the modifications of size and number of parenchymatous cells substantially contributed to the vegetative diversification. This fact implies that a simple structural adjustment can result in a major modification of growth habits in theDendrobiinae.  相似文献   
92.
AtJ1, a mitochondrial homologue of theEscherichia coli DnaJ protein   总被引:1,自引:0,他引:1  
The nucleotide sequence of a cDNA clone fromArabidopsis thaliana ecotype Columbia was determined, and the corresponding amino sequence deduced. The open reading frame encodes a protein, AtJ1, of 368 residues with a molecular mass of 41 471 Da and an isoelectric point of 9.2. The predicted sequence contains regions homologous to the J- and cysteine-rich domains ofEscherichia coli DnaJ, but the glycine/phenylalanine-rich region is not present. Based upon Southern analysis,Arabidopsis appears to have a singleatJ1 structural gene. A single species of mRNA, of 1.5 kb, was detected whenArabidopsis poly(A)+ RNA was hybridized with theatJ1 cDNA. The function ofatJ1 was tested by complementation of adnaJ deletion mutant ofE. coli, allowing growth in minimal medium at 44°C. The AtJ1 protein was expressed inE. coli as a fusion with the maltose binding protein. This fusion protein was purified by amylose affinity chromatography, then cleaved by digestion with the activated factor X protease. The recombinant AtJ1 protein was purified to electrophoretic homogeneity.In vitro, recombinant AtJ1 stimulated the ATPase activity of bothE. coli DnaK and maize endosperm cytoplasmic Stress70. The deduced amino acid sequence of AtJ1 contains a potential mitochondrial targeting sequence at the N-terminus. Radioactive recombinant AtJ1 was synthesized inE. coli and purified. When the labeled protein was incubated with intact pea cotyledon mitochondria, it was imported and proteolytically processed in a reaction that depended upon an energized mitochondrial membrane.Abbreviations MBP maltose binding protein - PCR polymerase chain reaction - Stress70c the cytosolic member of the 70 kDA family of stress-related proteins  相似文献   
93.
Previous studies indicated that plant nuclear genes for chloroplast and cytosolic isoenzymes of 3-phosphoglycerate kinase (PGK) arose through recombination between a preexisting gene of the eukaryotic host nucleus for the cytosolic enzyme and an endosymbiont-derived gene for the chloroplast enzyme. We readdressed the evolution of eukaryotic pgk genes through isolation and characterisation of a pgk gene from the extreme halophilic, photosynthetic archaebacterium Haloarcula vallismortis and analysis of PGK sequences from the three urkingdoms. A very high calculated net negative charge of 63 for PGK from H. vallismortis was found which is suggested to result from selection for enzyme solubility in this extremely halophilic cytosol. We refute the recombination hypothesis proposed for the origin of plant PGK isoenzymes. The data indicate that the ancestral gene from which contemporary homologues for the Calvin cycle/glycolytic isoenzymes in higher plants derive was acquired by the nucleus from (endosymbiotic) eubacteria. Gene duplication subsequent to separation of Chlamydomonas and land plant lineages gave rise to the contemporary genes for chloroplast and cytosolic PGK isoenzymes in higher plants, and resulted in replacement of the preexisting gene for PGK of the eukaryotic cytosol. Evidence suggesting a eubacterial origin of plant genes for PGK via endosymbiotic gene replacement indicates that plant nuclear genomes are more highly chimaeric, i.e. contain more genes of eubacterial origin, than is generally assumed.Abbreviations PGK 3-phosphoglycerate kinase - FBA fructose-1,6-bisphosphate aldolase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - TPI triosephosphate isomerase  相似文献   
94.
Molecular analysis of actinorhizal symbiotic systems: Progress to date   总被引:1,自引:0,他引:1  
The application of molecular tools to questions related to the genetics, ecology and evolution of actinorhizal symbiotic systems has been especially fruitful during the past two years. Host plant phylogenies based on molecular data have revealed markedly different relationships among host plants than have previously been suspected and have contributed to the development of new hypotheses on the origin and evolution of actinorhizal symbiotic systems. Molecular analyses of host plant gene expression in developing nodules have confirmed the occurrence of nodulin proteins and in situ hybridization techniques have been successfully adapted to permit the study of the spatial and temporal patterns of gene expression within actinorhizal nodules. The use of heterologous probes in combination with nucleotide sequence analysis have allowed a number of nif genes to be mapped on the Frankia chromosome which will ultimately contribute to the development of hypotheses related to nif gene regulation in Frankia. The use of both 16S and 23S rDNA nucleotide sequences has allowed the construction of phylogenetic trees that can be tested for congruence with symbiotic characters. In addition the development of Frankia-specific gene probes and amplification primers have contributed to studies on the genetic diversity and distribution of Frankia in the soil.  相似文献   
95.
Molecular genetics of sulfate assimilation in plants   总被引:4,自引:0,他引:4  
The sulfate assimilation pathway is the primary route by which higher plants obtain the sulfur necessary for growth. Sulfur is involved in a myriad of processes of central importance in metabolism. In the past few years much has been learned about this pathway and its regulation through analysis'of the genes encoding the enzymes and proteins that make up the sulfate assimilation pathway. The recent molecular genetic analysis builds on the biochemical and physiological groundwork of past studies. Further, gene analysis has provided the opportunity to compare directly the evolution of sulfate assimilation in plants and other organisms.,  相似文献   
96.
Turnover of organic nitrogen in soils and its availability to crops   总被引:4,自引:0,他引:4  
K. Mengel 《Plant and Soil》1996,178(1):83-93
The root development of barley seedlings grown for one week in an aerated nutrient solution was studied in the presence of dissolved organic matter from an aqueous chestnut leaf litter extract. In particular, the different effects of low and high molecular weight fractions (small molecules: molecular weight <1000; large molecules: >10,000) of the leaf litter extract were examined. In the presence of large molecules root growth was inhibited, an irregular root tip morphology was observed, and Ca and Mg concentrations in the shoots were lower than in control plants. These phytotoxic effects were not caused by the formation of an impermeable layer of large molecules on the root surfaces that lower accessibility for nutrient cations as inferred from voltammetric experiments. A germination assay using spruce seeds, however, indicated allelochemical effects of large molecules, which exhibit a higher aromaticity than the small molecules as indicated by spectroscopic characterisation. In the growth experiments with small molecules, no influence on the root development of barley was evident, but an increase of Ca and Mg in the shoots was detected. During these growth experiments, a large amount of the small molecules, mainly simple phenols and amino acids, disappeared from the nutrient solution. The loss of small molecules was most likely the effect of mineralisation.Abbreviations DOC dissolved organic carbon - DOM dissolved organic matter - LLE leaf litter extract - MW molecular weight - HMDE hanging mercury drop electrode  相似文献   
97.
The Biology of the Tospoviruses   总被引:1,自引:0,他引:1  
The tospoviruses are a diverse, cosmopolitan and economically important genus of plant viruses. In the recent past, interest in the tospoviruses has been rekindled with the resurgence and expansion of tomato spotted wilt virus and the appearance of new tospoviruses, including impatiens necrotic spot. This renewed interest in the tospoviruses, accompanied with the many recent advances in plant virology techniques, particularly those utilising molecular biology, have resulted in a rapid growth of our understanding of these viruses. This paper provides a review of the tospoviruses, encompassing all the major aspects of their biology, including the recent changes in the classification of the genus and current knowledge on molecular biology, vector relations, control and diagnosis.  相似文献   
98.
Growth kinetics of a bacteriophage in continuous culture   总被引:1,自引:0,他引:1  
Lytic coliphage Qbeta was grown in continuously cultured host bacteria using a cascade of stirred flow reactors. The apparatus was constructed so that the steady stream of exponentially growing bacterial cells passing through the stirred flow reactors served to prevent coevolution brought about by host-parasite interactions. Wall growth was the primary cause for deviation from ideal continuous culture conditions and is largely dependent on the surface structure of the host bacteria. Using an Escherichia coli strain deficient in adhesive type I pili expression, the desynchronization of single burst events could easily be followed over the course of four infection latency periods. Computer simulations based on a two-stage model for the Qbeta infection cycle were in perfect agreement with the experimental data. Applications of the optimized system to strategies of molecular evolution are discussed. (c) 1996 John Wiley & Sons, Inc.  相似文献   
99.
昆虫核酸分子系统学研究进展   总被引:6,自引:0,他引:6  
黄原  袁锋 《昆虫分类学报》1995,17(3):180-184
本文从研究对象、方法、类群、内容等方面综述了近十年来昆虫核酸分子系统学研究进展概况。文中首先介绍了RFLPA、探针杂交及DNA指纹、PCR与RAPD-PCR、顺序分析方法及应用情况,列举了在双翅目、膜翅目、同翅目、直翅目等目昆虫中的研究进展,并从居群遗传结构、分类学研究、系统发育和分子进化4个方面总结了昆虫核酸分子系统学的研究内容和主要成果,最后指出RAPD-PCR与RFLP联合用于测序是近期昆虫分子系统学上最有应用价值的方法。  相似文献   
100.
Obligate neotenic salamanders die if forced to metamorphose. We suggest that this can be explained by assuming: 1) their “excess” DNA is “junk” DNA; 2) the “adult” specifying portion of the DNA becomes junk DNA and is available for repeated duplication. This suggests a “new” junk DNA molecular clock. We obtain remarkable agreement in “predicting” the amount of DNA per nucleus in present day non-obligate neotene salamanders from this molecular clock. These observatons are consistent with the idea that the development of these animals is describable in terms of differentiation trees whose branches (gene cascades) corresponding to adult somatic tissues accumulate deleterious mutations over evolutionary time. We show that the amount of DNA per nucleus increases linearly with the phylogenetic age of salamander families. The lack of constraints by natural selection, on unused adult branches, may account for the large amount of so-called “junk DNA” in obligate neotenic salamanders. The effects of this excess DNA, via increased cell size, suggest a positive feedback, ecophysiological explanation for such junk DNA: adaptation to cool water environments is enhanced by the lower metabolism associated with more DNA, larger cells and slower developmental time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号