首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17144篇
  免费   1732篇
  国内免费   973篇
  19849篇
  2024年   60篇
  2023年   411篇
  2022年   401篇
  2021年   544篇
  2020年   713篇
  2019年   919篇
  2018年   846篇
  2017年   775篇
  2016年   835篇
  2015年   789篇
  2014年   893篇
  2013年   1847篇
  2012年   710篇
  2011年   747篇
  2010年   653篇
  2009年   759篇
  2008年   846篇
  2007年   843篇
  2006年   789篇
  2005年   672篇
  2004年   647篇
  2003年   600篇
  2002年   556篇
  2001年   388篇
  2000年   354篇
  1999年   300篇
  1998年   296篇
  1997年   275篇
  1996年   208篇
  1995年   178篇
  1994年   143篇
  1993年   124篇
  1992年   131篇
  1991年   72篇
  1990年   63篇
  1989年   49篇
  1988年   37篇
  1987年   35篇
  1986年   25篇
  1985年   38篇
  1984年   56篇
  1983年   39篇
  1982年   49篇
  1981年   41篇
  1980年   23篇
  1979年   18篇
  1978年   16篇
  1977年   14篇
  1975年   6篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Betaine‐homocysteine S‐methyltransferase (BHMT) is a zinc‐dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. This reaction supports S‐adenosylmethionine biosynthesis, which is required for hundreds of methylation reactions in humans. Herein we report that BHMT is activated by potassium ions with an apparent KM for K+ of about 100 µM. The presence of potassium ions lowers the apparent KM of the enzyme for homocysteine, but it does not affect the apparent KM for betaine or the apparent kcat for either substrate. We employed molecular dynamics (MD) simulations to theoretically predict and protein crystallography to experimentally localize the binding site(s) for potassium ion(s). Simulations predicted that K+ ion would interact with residues Asp26 and/or Glu159. Our crystal structure of BHMT bound to homocysteine confirms these sites of interaction and reveals further contacts between K+ ion and BHMT residues Gly27, Gln72, Gln247, and Gly298. The potassium binding residues in BHMT partially overlap with the previously identified DGG (Asp26‐Gly27‐Gly28) fingerprint in the Pfam 02574 group of methyltransferases. Subsequent biochemical characterization of several site‐specific BHMT mutants confirmed the results obtained by the MD simulations and crystallographic data. Together, the data herein indicate that the role of potassium ions in BHMT is structural and that potassium ion facilitates the specific binding of homocysteine to the active site of the enzyme. Proteins 2014; 82:2552–2564. © 2014 Wiley Periodicals, Inc.  相似文献   
992.
DNA‐based chiral selectors are constructed to discriminate ofloxacin enantiomers through metal‐ion anchoring on a special DNA double helix that contains successive GC pairs. The effects of metal ions involving Mg2+, Ni2+, Cu2+, Ag+, and Pt2+ were studied on the regulation of DNA chiral discrimination towards ofloxacin enantiomers. It is shown that DNA‐Cu(II) complexes exhibit the highest enantioselectivities at the [Cu2+]/base ratio of 0.1. The enantiomeric excess can reach 59% in R‐enantiomer after being adsorbed by the RET‐Cu(II) complex. Stereoselective recognition of ofloxacin enantiomers on the double helix is tunable via external stimulus, providing a programmable desorption process to regenerate DNA. This DNA‐based chiral selector exhibits excellent reusability without apparent loss of enantioselectivity after three cycles of adsorption and desorption. Chirality 26:249–254, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
993.
Membrane proteins are aggregation‐prone in aqueous environments, and their biogenesis poses acute challenges to cellular protein homeostasis. How the chaperone network effectively protects integral membrane proteins during their post‐translational targeting is not well understood. Here, biochemical reconstitutions showed that the yeast cytosolic Hsp70 is responsible for capturing newly synthesized tail‐anchored membrane proteins (TAs) in the soluble form. Moreover, direct interaction of Hsp70 with the cochaperone Sgt2 initiates a sequential series of TA relays to the dedicated TA targeting factor Get3. In contrast to direct loading of TAs to downstream chaperones, stepwise substrate loading via Hsp70 maintains the solubility and targeting competence of TAs, ensuring their efficient delivery to the endoplasmic reticulum (ER). Inactivation of cytosolic Hsp70 severely impairs TA translocation in vivo. Our results demonstrate a new role of cytosolic Hsp70 in directly assisting the targeting of an essential class of integral membrane proteins and provide a paradigm for how “substrate funneling” through a chaperone cascade preserves the conformational quality of nascent membrane proteins during their biogenesis.  相似文献   
994.
Multi-protein machines are responsible for most cellular tasks, and many efforts have been invested in the systematic identification and characterization of thousands of these macromolecular assemblies. However, unfortunately, the (quasi) atomic details necessary to understand their function are available only for a tiny fraction of the known complexes. The computational biology community is developing strategies to integrate structural data of different nature, from electron microscopy to X-ray crystallography, to model large molecular machines, as it has been done for individual proteins and interactions with remarkable success. However, unlike for binary interactions, there is no reliable gold-standard set of three-dimensional (3D) complexes to benchmark the performance of these methodologies and detect their limitations. Here, we present a strategy to dynamically generate non-redundant sets of 3D heteromeric complexes with three or more components. By changing the values of sequence identity and component overlap between assemblies required to define complex redundancy, we can create sets of representative complexes with known 3D structure (i.e., target complexes). Using an identity threshold of 20% and imposing a fraction of component overlap of < 0.5, we identify 495 unique target complexes, which represent a real non-redundant set of heteromeric assemblies with known 3D structure. Moreover, for each target complex, we also identify a set of assemblies, of varying degrees of identity and component overlap, that can be readily used as input in a complex modeling exercise (i.e., template subcomplexes). We hope that resources like this will significantly help the development and progress assessment of novel methodologies, as docking benchmarks and blind prediction contests did. The interactive resource is accessible at https://DynBench3D.irbbarcelona.org.  相似文献   
995.
The rapidly growing field of molecular diet analysis is becoming increasingly popular among ecologists, especially when investigating methodologically challenging groups, such as invertebrate generalist predators. Prey DNA detection success is known to be affected by multiple factors; however, the type of dietary sample has rarely been considered. Here, we address this knowledge gap by comparing prey DNA detection success from three types of dietary samples. In a controlled feeding experiment, using the carabid beetle Pterostichus melanarius as a model predator, we collected regurgitates, faeces and whole consumers (including their gut contents) at different time points postfeeding. All dietary samples were analysed using multiplex PCR, targeting three different length DNA fragments (128, 332 and 612 bp). Our results show that both the type of dietary sample and the size of the DNA fragment contribute to a significant part of the variation found in the detectability of prey DNA. Specifically, we observed that in both regurgitates and whole consumers, prey DNA was detectable significantly longer for all fragment sizes than for faeces. Based on these observations, we conclude that prey DNA detected from regurgitates and whole consumers DNA extracts are comparable, whereas prey DNA detected from faeces, though still sufficiently reliable for ecological studies, will not be directly comparable to the former. Therefore, regurgitates and faeces constitute a useful, nonlethal source for dietary information that could be applied to field studies in situations when invertebrate predators should not be killed.  相似文献   
996.
Epsin possesses a conserved epsin N-terminal homology (ENTH) domain that acts as a phosphatidylinositol 4,5-bisphosphate‐lipid‐targeting and membrane‐curvature‐generating element. Upon binding phosphatidylinositol 4,5‐bisphosphate, the N-terminal helix (H0) of the ENTH domain becomes structured and aids in the aggregation of ENTH domains, which results in extensive membrane remodeling. In this article, atomistic and coarse-grained (CG) molecular dynamics (MD) simulations are used to investigate the structure and the stability of ENTH domain aggregates on lipid bilayers. EPR experiments are also reported for systems composed of different ENTH-bound membrane morphologies, including membrane vesicles as well as preformed membrane tubules. The EPR data are used to help develop a molecular model of ENTH domain aggregates on preformed lipid tubules that are then studied by CG MD simulation. The combined computational and experimental approach suggests that ENTH domains exist predominantly as monomers on vesiculated structures, while ENTH domains self-associate into dimeric structures and even higher‐order oligomers on the membrane tubes. The results emphasize that the arrangement of ENTH domain aggregates depends strongly on whether the local membrane curvature is isotropic or anisotropic. The molecular mechanism of ENTH‐domain-induced membrane vesiculation and tubulation and the implications of the epsin's role in clathrin-mediated endocytosis resulting from the interplay between ENTH domain membrane binding and ENTH domain self-association are also discussed.  相似文献   
997.
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.  相似文献   
998.
Nuclear magnetic resonance is used to investigate the backbone dynamics in 6-phosphogluconolactonase from Trypanosoma brucei (Tb6PGL) with (holo-) and without (apo-) 6-phosphogluconic acid as ligand. Relaxation data were analyzed using the model-free approach and reduced spectral density mapping. Comparison of predictions, based on 77 ns molecular dynamics simulations, with the observed relaxation rates gives insight into dynamical properties of the protein and their alteration on ligand binding. Data indicate dynamics changes in the vicinity of the binding site. More interesting is the presence of perturbations located in remote regions of this well-structured globular protein in which no large-amplitude motions are involved. This suggests that delocalized changes in dynamics that occur upon binding could be a general feature of protein-target interactions.  相似文献   
999.
Joseph TT  Osman R 《Proteins》2012,80(5):1283-1298
Silencing in RNAi is strongly affected by guide‐strand/target‐mRNA mismatches. Target nucleation is thought to occur at positions 2–8 of the guide (“seed region”); successful hybridization in this region is the primary determinant of target‐binding affinity and hence target cleavage. To define a molecular basis for the target sequence selectivity in RNAi, we studied all possible distinct single mismatches in seven positions of the seed region—a total of 21 substitutions. We report results from soft‐core thermodynamic integration simulations to determine changes in targeting binding‐free energies to Argonaute due to single mismatches in the guide strand, which arise during binding of an imperfectly matched target mRNA. In agreement with experiment, most mismatches impair target binding, consistent with a prominent role for binding affinity changes in RNAi sequence selectivity. Individual Argonaute residues located near the mismatched base pair are found to contribute significantly to binding affinity changes. We also use this methodology to analyze the mismatch‐dependent free energy changes for dissociation of a DNA?RNA hybrid from Argonaute, as a model for the escape of miRNAs from the silencing pathway. Several mismatched sequences of the miRNA have increased affinity to Argonaute, implying that some mismatches may reduce the probability for escape. Furthermore, calculations of base‐substitution‐dependent free energy changes for binding ssDNA reveal mild sequence sensitivity as expected for guide strand binding to Argonaute. Our findings give a thermodynamic basis for RNAi target sequence selectivity and suggest that miRNA mismatches may increase silencing effectiveness and thus could be evolutionarily advantageous. Proteins 2012; © 2011 Wiley Periodicals, Inc.  相似文献   
1000.
Summary— A review of the proteinaceous machinery involved in protein sorting pathways and protein folding and assembly in mitochondria and peroxisomes is presented. After considering the various sorting pathways and targeting signals of mitochondrial and peroxisomal proteins, we make a comparative dissection of the protein factors involved in: i) the stabilization of cytosolic precursor proteins in a translocation competent conformation; ii) the membrane import apparatus of mitochondria and peroxisomes; iii) the processing of mitochondrial precursor proteins, and the eventual processing of certain peroxisomal precursor, in the interior of the organelles; and iv) the requirement of molecular chaperones for appropriate folding and assembly of imported proteins in the matrix of both organelles. Those aspects of mitochondrial biogenesis that have developed rapidly during the last few years, such as the requirement of molecular chaperones, are stressed in order to stimulate further parallel investigations aimed to understand the origin, biochemistry, molecular biology and pathology of peroxisomes. In this regard, a brief review of findings from our group and others is presented in which the role of the F1-ATPase α-subunit is pointed out as a molecular chaperone of mitochondria and chloroplasts. In addition, data are presented that could question our previous indication that the immunoreactive protein found in the rat liver peroxisomes is due to the presence of the F1-ATPase α-subunit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号