首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20879篇
  免费   2095篇
  国内免费   1248篇
  2024年   52篇
  2023年   428篇
  2022年   491篇
  2021年   724篇
  2020年   812篇
  2019年   1033篇
  2018年   955篇
  2017年   858篇
  2016年   986篇
  2015年   945篇
  2014年   1064篇
  2013年   1971篇
  2012年   953篇
  2011年   917篇
  2010年   804篇
  2009年   1022篇
  2008年   1024篇
  2007年   996篇
  2006年   942篇
  2005年   846篇
  2004年   765篇
  2003年   709篇
  2002年   654篇
  2001年   478篇
  2000年   481篇
  1999年   379篇
  1998年   377篇
  1997年   346篇
  1996年   292篇
  1995年   237篇
  1994年   216篇
  1993年   184篇
  1992年   187篇
  1991年   135篇
  1990年   108篇
  1989年   92篇
  1988年   83篇
  1987年   60篇
  1986年   43篇
  1985年   58篇
  1984年   100篇
  1983年   66篇
  1982年   76篇
  1981年   71篇
  1980年   49篇
  1979年   37篇
  1978年   33篇
  1977年   25篇
  1976年   20篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure–function studies of metalloid porins, including the basis of their substrate selectivity.  相似文献   
2.
A faster rate of nuclear DNA evolution has recently been found for plants occupying warmer low latitudes relative to those in cooler high latitudes. That earlier study by our research group compared substitution rates within the variable internal transcribed spacer (ITS) region of the ribosomal gene complex amongst 45 congeneric species pairs, each member of which differed in their latitudinal distributions. To determine whether this rate differential might also occur within highly conserved DNA, we sequenced the 18S ribosomal gene in the same 45 pairs of plants. We found that the rate of evolution in 18S was 51% faster in the tropical plant species relative to their temperate sisters and that the substitution rate in 18S correlated positively with that in the more variable ITS. This result, with a gene coding for ribosomal structure, suggests that climatic influences on evolution extend to functionally important regions of the genome.  相似文献   
3.
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.  相似文献   
4.
(+)-2,9 alpha-Dimethyl-5-(m-hydroxyphenyl)morphan is the only phenylmorphan analog whose affinity for opioid kappa-receptors is greater than its affinity for opioid mu-receptors. Pharmacologically, the compound is a pure opioid antagonist devoid of agonist activity in in vivo assays of antinociception. The absolute configuration of the compound has been determined to be (1R,5S,9R) from an X-ray crystallographic study of the chloride salt. Thus, the absolute configuration corresponds to that of the atypical opioid agonist (-)-phenylmorphan while the weak atypical agonist (-)-2,9 alpha-dimethyl-5-(m- hydroxyphenyl)morphan corresponds to the potent morphine-like (+)-phenylmorphan. The preferred orientations of the phenyl ring for the two stereoisomers were determined using the molecular mechanics program MM2-87 and found to vary from that of the two parent compounds. The atypical properties of the two 9 alpha-methyl analogs is consistent with an opioid ligand model which proposes that morphine-like properties require a particular range of phenyl orientations. There was good agreement between the structure obtained from X-ray crystallography and computed with the MM2-87 program.  相似文献   
5.
Peripheral populations of eight species of freshwater bivalves (Unionidae.) extending their geographic ranges into Nova Scotia, Canada, were examined electrophoretically to determine both the extent of genetic variability within such populations, and whether the hypothesized pathway of colonization across the Isthmus of Chignecto is reflected in patterns of genetic resemblance among these populations. The Nova Scotian species examined could be separated into two groups based on levels of observed heterozygosity and levels of variability in allele frequencies. The first group is characterized by low levels of heterozygosity and polymorphism compared with north-eastern American populations, and in the case of one species, Elliptio complanala, considerable variability in allele frequencies among populations occurring in similar habitats in different drainages. Populations of E. complanata from Nova Scotia can be differentiated from conspecific populations on the southern Atlantic Slope by possession of fast alleles at two loci. Multivariate analyses define subgroups within populations of E. complanata consistent with hypothesis that the species invaded Nova Scotia by way of the Isthmus of Chignecto, and then split into two groups, one of which colonized Cape Breton to the north and the other of which colonized southern areas of the Province. The second group of Nova Scotian species is characterized by little reduction in heterozygosity and polymorphism compared with values observed among north-eastern American conspecifics or congeners, little variability in allele frequencies from population to population, and little evidence to suggest that these species were dependent on the land bridge to invade the Province. The type of dispersal is hypothesized to be responsible, in part, for these differences: larvae of species in the first group rely on a parasitic attachment to fish with territorial habits limited to fresh water, and are thus likely to invade new drainages separated by salt water by chance, in small numbers, and in stepping-stone fashion. Species in the second group parasitize anadromous or saltwater tolerant hosts, are likely to be introduced into new habitats in greater numbers and/or receive greater amounts of gene flow subsequent to colonization, and seem less dependent on land-bridges to colonize new habitats.  相似文献   
6.
Intraspecific trait variation (ITV), based on available genetic diversity, is one of the major means plant populations can respond to environmental variability. The study of functional trait variation and diversity has become popular in ecological research, for example, as a proxy for plant performance influencing fitness. Up to now, it is unclear which aspects of intraspecific functional trait variation (iFDCV) can be attributed to the environment or genetics under natural conditions. Here, we examined 260 individuals from 13 locations of the rare (semi‐)dry calcareous grassland species Trifolium montanum L. in terms of iFDCV, within‐habitat heterogeneity, and genetic diversity. The iFDCV was assessed by measuring functional traits (releasing height, biomass, leaf area, specific leaf area, leaf dry matter content, Fv/Fm, performance index, stomatal pore surface, and stomatal pore area index). Abiotic within‐habitat heterogeneity was derived from altitude, slope exposure, slope, leaf area index, soil depth, and further soil factors. Based on microsatellites, we calculated expected heterozygosity (He) because it best‐explained, among other indices, iFDCV. We performed multiple linear regression models quantifying relationships among iFDCV, abiotic within‐habitat heterogeneity and genetic diversity, and also between separate functional traits and abiotic within‐habitat heterogeneity or genetic diversity. We found that abiotic within‐habitat heterogeneity influenced iFDCV twice as strong compared to genetic diversity. Both aspects together explained 77% of variation in iFDCV ( = .77, F2, 10 = 21.66, p < .001). The majority of functional traits (releasing height, biomass, specific leaf area, leaf dry matter content, Fv/Fm, and performance index) were related to abiotic habitat conditions indicating responses to environmental heterogeneity. In contrast, only morphology‐related functional traits (releasing height, biomass, and leaf area) were related to genetics. Our results suggest that both within‐habitat heterogeneity and genetic diversity affect iFDCV and are thus crucial to consider when aiming to understand or predict changes of plant species performance under changing environmental conditions.  相似文献   
7.
To effectively integrate DNA sequence analysis and classical nematode taxonomy, we must be able to obtain DNA sequences from formalin-fixed specimens. Microdissected sections of nematodes were removed from specimens fixed in formalin, using standard protocols and without destroying morphological features. The fixed sections provided sufficient template for multiple polymerase chain reaction-based DNA sequence analyses.  相似文献   
8.
Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.  相似文献   
9.
Combining experimental evolution with whole‐genome resequencing is a promising new strategy for investigating the dynamics of evolutionary change. Published studies that have resequenced laboratory‐selected populations of sexual organisms have typically focused on populations sampled at the end of an evolution experiment. These studies have attempted to associate particular alleles with phenotypic change and attempted to distinguish between different theoretical models of adaptation. However, neither the population used to initiate the experiment nor multiple time points sampled during the evolutionary trajectory are generally available for examination. In this issue of Molecular Ecology, Orozco‐terWengel et al. (2012) take a significant step forward by estimating genome‐wide allele frequencies at the start, 15 generations into and at the end of a 37‐generation Drosophila experimental evolution study. The authors identify regions of the genome that have responded to laboratory selection and describe the temporal dynamics of allele frequency change. They identify two common trajectories for putatively adaptive alleles: alleles either gradually increase in frequency throughout the entire 37 generations or alleles plateau at a new frequency by generation 15. The identification of complex trajectories of alleles under selection contributes to a growing body of literature suggesting that simple models of adaptation, whereby beneficial alleles arise and increase in frequency unimpeded until they become fixed, may not adequately describe short‐term response to selection.  相似文献   
10.
Improving our knowledge of the links between ecology and evolution is especially critical in the actual context of global rapid environmental changes. A critical step in that direction is to quantify how variation in ecological factors linked to habitat modifications might shape observed levels of genetic variability in wild populations. Still, little is known on the factors affecting levels and distribution of genetic diversity at the individual level, despite its vital underlying role in evolutionary processes. In this study, we assessed the effects of habitat quality on population structure and individual genetic diversity of tree swallows (Tachycineta bicolor) breeding along a gradient of agricultural intensification in southern Québec, Canada. Using a landscape genetics approach, we found that individual genetic diversity was greater in poorer quality habitats. This counter-intuitive result was partly explained by the settlement patterns of tree swallows across the landscape. Individuals of higher genetic diversity arrived earlier on their breeding grounds and settled in the first available habitats, which correspond to intensive cultures. Our results highlight the importance of investigating the effects of environmental variability on individual genetic diversity, and of integrating information on landscape structure when conducting such studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号