首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25860篇
  免费   2379篇
  国内免费   2009篇
  2024年   74篇
  2023年   557篇
  2022年   622篇
  2021年   849篇
  2020年   955篇
  2019年   1289篇
  2018年   1154篇
  2017年   1107篇
  2016年   1124篇
  2015年   1059篇
  2014年   1245篇
  2013年   2590篇
  2012年   979篇
  2011年   1128篇
  2010年   992篇
  2009年   1246篇
  2008年   1384篇
  2007年   1285篇
  2006年   1252篇
  2005年   1069篇
  2004年   1059篇
  2003年   937篇
  2002年   835篇
  2001年   622篇
  2000年   615篇
  1999年   509篇
  1998年   488篇
  1997年   420篇
  1996年   397篇
  1995年   344篇
  1994年   291篇
  1993年   219篇
  1992年   236篇
  1991年   181篇
  1990年   141篇
  1989年   120篇
  1988年   94篇
  1987年   96篇
  1986年   74篇
  1985年   98篇
  1984年   102篇
  1983年   64篇
  1982年   88篇
  1981年   74篇
  1980年   49篇
  1979年   29篇
  1978年   31篇
  1977年   23篇
  1976年   15篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
Abstract

We have synthesized two RNA fragments: a 42-mer corresponding to the full loop I sequence of the loop I region of ColE1 antisense RNA (RNA I), plus three additional Gs at the 5′-end, and a 31-mer which has 11 5′-end nucleotides (G(-2)-U9) deleted. The secondary structure of the 42-mer, deduced from one- and two-dimensional NMR spectra, consists of a stem of 11 base-pairs which contains a U-U base-pair and a bulged C base, a 7 nucleotide loop, and a single-stranded 5′ end of 12 nucleotides. The UV-melting study of the 42-mer further revealed a multi-step melting behavior with transition temperatures 32°C and 71°C clearly discernible. In conjunction with NMR melting study the major transition at 71°C is assigned to the overall melting of the stem region and the 32°C transition is assigned to the opening of the loop region. The deduced secondary structure agrees with that proposed for the intact RNA I and provides structural bases for understanding the specificity of RNase E.  相似文献   
992.
The “stem cells” are commonly defined as “cells capable of self-renewal through replication and differentiating into specific lineages”. The mammary gland contains functional stem/progenitor cells. The current study was planned with the objectives to study the differentiation dynamics of Korean Holstein mammary epithelial stem cells (KHMESCs) under the optimum culture conditions. Lineage negative KHMESCs isolated from mammary tissue of lactating cows have shown the typical differentiation dynamics with formation of lobulo–alveolar structures in in vitro culture. This suggests the existence of bipotential mammary epithelial stem cells in the mammary gland. The strong mRNA expression of pluripotency factors indicates stemness, whereas expression of milk protein genes and epithelial cell-specific gene indicate their differentiation capabilities. Further, immunostaining results have shown the differentiation capabilities of KHMESCs into both luminal and basal lineages under the extracellular matrix (ECM, matrigel) free environment. However, under matrigel, the differentiation process was comparatively higher than without matrigel. Immunostaining results also suggested that differentiated cells could secrete milk proteins such as β-casein. To our knowledge, these data represent the first report on the differentiation dynamics and establishment of mammary epithelial stem cells from Korean Holstein with typical stemness properties. It was observed that isolated KHMESCs had normal morphology, growth pattern, differentiation ability, cytogenetic and secretory activity even without ECM. Therefore, it is concluded that established KHMESCs could be used for further studies on Korean Holstein dairy cows related to lactation studies, as non-GMO animal bioreactors and stem cell-based management of bovine mastitis including post-mastitis damage.  相似文献   
993.
Abstract

Scanning tunneling microscope (STM) images of random-sequence nucleic acid polymers under water show internal structure which depends strongly on the packing density of the polymer. Images of dense aggregates have a semicrystalline order with the individual polymers adopting simple periodic structures. Loose aggregates (or isolated molecules) show structural variability with considerable local bending and curving on a nanometer scale. It is not clear to what extent this structure is induced by the operation of the microscope. In order to investigate the possibility that the structure is sequence directed, we have imaged various DNA and RNA polymers at low packing densities. We present results here for random sequence DNA, poly(dAT) · poly(dAT), poly(dA) · poly(dT), poly(dCG) · poly(dCG) and for random sequence RNA and poly(U). In contrast to loose aggregates of the random sequence material, the homopolymers show few sharp bends. Furthermore, the homopolymers appear to yield characteristic backbone patterns, usually at resolutions in excess of that obtained with random sequence polymers. The random sequence polymers show much more evidence of image distortion due to tip-molecule interactions, suggesting that they are, on average, mechanically less stable in the STM tunnel-gap than the homopolymers. Thus, while some of the structure observed in STM images is a consequence of tip-molecule interactions, it is related to sequence-directed properties of the polymer.  相似文献   
994.
Abstract

The recently introduced Essential Dynamics sampling method is extended such that an exhaustive sampling of the available (backbone) configurational space can be achieved. From an initial Molecular Dynamics simulation an approximated definition of the essential subspace is obtained. This subspace is used to direct subsequent simulations by means of constraint forces. The method is applied to the peptide hormone guanylin, solvated in water, of which the structure was determined recently. The peptide exists in two forms and for both forms, an extensive sampling was produced. The sampling algorithm fills the available space (of the essential coordinates used in the procedure) at a rate that is approximately six to seven times larger than that for traditional Molecular Dynamics. The procedure does not cause any significant perturbation, which is indicated by the fact that free Molecular Dynamics simulations started at several places in the space defined by the Essential Dynamics sample that complete space. Moreover, analyses of the average free Molecular Dynamics step have shown that nowhere except close to the edge of the available space, there are regions where the system shows a drift in a particular direction. This result also shows that in principle, the essential subspace is a constant free energy surface, with well-defined and steep borders, in which the system moves diffusively. In addition, a comparison between two independent essential dynamics sampling runs, of one form of the peptide, shows that the obtained essential subspaces are virtually identical.  相似文献   
995.
Abstract

Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented.  相似文献   
996.
Noonan syndrome (NS) is a common autosomal dominant congenital disorder which could cause the congenital cardiopathy and cancer predisposition. Previous studies reported that the knock-in mouse models of the mutant D61G of SHP2 exhibited the major features of NS, which demonstrated that the mutation D61G of SHP2 could cause NS. To explore the effect of D61G mutation on SHP2 and explain the high activity of the mutant, molecular dynamic simulations were performed on wild type (WT) of SHP2 and the mutated SHP2-D61G, respectively. The principal component analysis and dynamic cross-correlation mapping, associated with secondary structure, showed that the D61G mutation affected the motions of two regions (residues Asn 58-Thr 59 and Val 460-His 462) in SHP2 from β to turn. Moreover, the residue interaction networks analysis, the hydrogen bond occupancy analysis and the binding free energies were calculated to gain detailed insight into the influence of the mutant D61G on the two regions, revealing that the major differences between SHP2-WT and SHP2-D61G were the different interactions between Gly 61 and Gly 462, Gly 61 and Ala 461, Gln 506 and Ile 463, Gly 61 and Asn 58, Ile 463 and Thr 466, Gly 462 and Cys 459. Consequently, our findings here may provide knowledge to understand the increased activity of SHP2 caused by the mutant D61G.  相似文献   
997.
Abstract

Binding to DNA of two synthetic peptides, Val-Thr-Thr-Val-Val-NH-NH-Dns and Thr-Val- Thr-Lys-Val-Gly-Thr-Lsy-Val-Gly-Thr-Val-Val-NH-NH-Dns (where Dns is a residue of 5- dimethylaminonaphthalene-l-sulfonic acid), has been studied by circular dichroism, electron microscopy and fluorescence methods. It has been found that these two peptides can self- associate in aqueous solution as follows from the fact that concentration-dependent changes are observed in the UV absorbance and fluorescence spectra. The two peptides can bind to DNA both in self-associated and monomeric forms. The pentapeptide in the β-associated form binds more strongly to poly(dG) · poly(dC) than to poly[d(A-C)] · poly[d(G-T)] and poly(dA) · poly(dT) whereas the tridecapeptide exhibits an opposite order of preferences binding more strongly to poly[d(A-C)] · poly[d(G-T)] and poly(dA) · poly(dT) than to poly(dG) · poly(dC).

Binding is a cooperative process which is accompanied by the DNA compaction at peptide/DNA base pair ratios greater than l. At the initial stage of the compaction process, the coalescence of DNA segments covered by bound peptide molecules leads to the formation of DNA loops stabilized by the interaction between peptide molecules bound to different DNA segments. Further increase in the peptide/DNA ratio leads to the formation of rod-like structures each consisting of two or more double-stranded DNA segments. The final stage of the compaction process involves folding of fibrillar macromolecular complexes into a globular structure containing only one DNA molecule.  相似文献   
998.
Rice Resistance to Planthoppers and Leafhoppers   总被引:3,自引:0,他引:3  
For over 50 years, host-plant resistance has been regarded as an efficient method to reduce yield losses to rice caused by delphacid and cicadelid hoppers. Already a number of resistant rice varieties have been developed and deployed throughout Asia. To date, over 70 hopper resistance genes have been identified in rice; however, less than 10 genes have been deliberately introduced to commercial rice varieties. Currently, due to recent brown planthopper (Nilaparvata lugens [Stål]) and whitebacked planthopper (Sogatella furcifera [Horvath]) outbreaks occurring at an unprecedented scale, researchers are working toward a second generation of resistant varieties using newly identified gene loci and applying new molecular breeding methods. This paper reviews advances in the identification of resistance genes and QTLs against hoppers in rice. It collates all published information on resistance loci and QTLs against the major rice planthoppers and leafhoppers and presents information on gene locations, genetic markers, differential varieties, and wild rice species as sources of resistance. The review indicates that, whereas progress in the identification of genes has been rapid, considerable tidying of the information is required, especially regarding gene nomenclature and resistance spectra. Furthermore, sound information on gene functioning is almost completely lacking. However, hopper responses to resistance mechanisms are likely to be similar because a single phenotyping technique has been applied by most national and international breeding programs during germplasm screening. The review classifies genes occurring at two chromosome regions associated with several identified resistance loci and highlights these (Chr4S: BphR-R and Chr12L: BphR-R) as general stress response regions. The review calls for a greater diversity of phenotyping methods to enhance the durability of resistant varieties developed using marker-aided selection and emphasizes a need to anticipate the development of virulent hopper populations in response to the field deployment of genes.  相似文献   
999.
Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin’s exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate–aromatic interactions including CH–π and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to β-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.  相似文献   
1000.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an important drug target for anti-acquired immune deficiency disease (AIDS) treatment and diketo-acid (DKA) inhibitors are potent and selective inhibitors of HIV-1 IN. Due to lack of three-dimensional structures including detail interactions between HIV-1 IN and its substrate viral DNA, the drug design and screening platform remains incompleteness and deficient. In addition, the action mechanism of DKA inhibitors with HIV-1 IN is not well understood. In view of the high homology between the structure of prototype foamy virus (PFV) IN and that of HIV-1 IN, we used PFV IN as a surrogate model for HIV-1 IN to investigate the inhibitory mechanism of raltegravir (RLV) and the binding modes with a series of DKA inhibitors. Firstly, molecular dynamics simulations of PFV IN, IN-RLV, IN-DNA, and IN-DNA-RLV systems were performed for 10?ns each. The interactions and inhibitory mechanism of RLV to PFV IN were explored through overall dynamics behaviors, catalytic loop conformation distribution, and hydrogen bond network analysis. The results show that the coordinated interactions of RLV with IN and viral DNA slightly reduce the flexibility of catalytic loop region of IN, and remarkably restrict the mobility of the CA end of viral DNA, which may lead to the partial loss of the inhibitory activity of IN. Then, we docked a series of DKA inhibitors into PFV IN-DNA receptor and obtained the IN-DNA-inhibitor complexes. The docking results between PFV IN-DNA and DKA inhibitors agree well with the corresponding complex of HIV-1 IN, which proves the dependability of PFV IN-DNA used for the anti-AIDS drug screening. Our study may help to make clear some theoretical questions and to design anti-AIDS drug based on the structure of IN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号