首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25860篇
  免费   2379篇
  国内免费   2009篇
  2024年   74篇
  2023年   557篇
  2022年   622篇
  2021年   849篇
  2020年   955篇
  2019年   1289篇
  2018年   1154篇
  2017年   1107篇
  2016年   1124篇
  2015年   1059篇
  2014年   1245篇
  2013年   2590篇
  2012年   979篇
  2011年   1128篇
  2010年   992篇
  2009年   1246篇
  2008年   1384篇
  2007年   1285篇
  2006年   1252篇
  2005年   1069篇
  2004年   1059篇
  2003年   937篇
  2002年   835篇
  2001年   622篇
  2000年   615篇
  1999年   509篇
  1998年   488篇
  1997年   420篇
  1996年   397篇
  1995年   344篇
  1994年   291篇
  1993年   219篇
  1992年   236篇
  1991年   181篇
  1990年   141篇
  1989年   120篇
  1988年   94篇
  1987年   96篇
  1986年   74篇
  1985年   98篇
  1984年   102篇
  1983年   64篇
  1982年   88篇
  1981年   74篇
  1980年   49篇
  1979年   29篇
  1978年   31篇
  1977年   23篇
  1976年   15篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
33.
Fluctuations in marine populations often relate to the supply of recruits by oceanic currents. Variation in these currents is typically driven by large‐scale changes in climate, in particular ENSO (El Nino Southern Oscillation). The dependence on large‐scale climatic changes may, however, be modified by early life history traits of marine taxa. Based on eight years of annual surveys, along 150 km of coastline, we examined how ENSO influenced abundance of juvenile fish, coral spat, and canopy‐forming macroalgae. We then investigated what traits make populations of some fish families more reliant on the ENSO relationship than others. Abundance of juvenile fish and coral recruits was generally positively correlated with the Southern Oscillation Index (SOI), higher densities recorded during La Niña years, when the ENSO‐influenced Leeuwin Current is stronger and sea surface temperature higher. The relationship is typically positive and stronger among fish families with shorter pelagic larval durations and stronger swimming abilities. The relationship is also stronger at sites on the coral back reef, although the strongest of all relationships were among the lethrinids (r = .9), siganids (r = .9), and mullids (r = .8), which recruit to macroalgal meadows in the lagoon. ENSO effects on habitat seem to moderate SOI–juvenile abundance relationship. Macroalgal canopies are higher during La Niña years, providing more favorable habitat for juvenile fish and strengthening the SOI effect on juvenile abundance. Conversely, loss of coral following a La Niña‐related heat wave may have compromised postsettlement survival of coral dependent species, weakening the influence of SOI on their abundance. This assessment of ENSO effects on tropical fish and habitat‐forming biota and how it is mediated by functional ecology improves our ability to predict and manage changes in the replenishment of marine populations.  相似文献   
34.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   
35.
Random amplified polymorphic DNA (RAPD) markers are used to estimate interspecific variation among mangrove and non-mangrove Heritiera fomes, H. littoralis and H. macrophylla. All the species have 2n = 38 chromosomes, with minute structural changes distinguishing the karyotype of each species. Significant variation of 4C DNA content occurs at the interspecific level. Interspecific polymorphism ranged from 14.09% between H. fomes and H. littoralis to 52.73% between H. fomes and H. macrophylla. H. macrophylla showed wide polymorphism in the RAPD marker with H. littoralis (51.23%) and H. fomes (52.73%). Two distinct RAPD products obtained from OPA-10 (1000 bp) and OPD-15 (900 bp) found characteristic molecular markers in H. macrophylla , a species from a non-mangrove habitat. H. macrophylla was more distantly related to H. fomes [genetic distance (1-F) = 0.305] than to H. littoralis [genetic distance (1-F) = 0.273]. H. littoralis was of a closer affinity to H. fomes [genetic distance (1-F) = 0.218] than to H. macrophylla.  相似文献   
36.
37.
Melanopsins play a key role in non-visual photoreception in mammals. Their close phylogenetic relationship to the photopigments in invertebrate visual cells suggests they have evolved to acquire molecular characteristics that are more suited for their non-visual functions. Here we set out to identify such characteristics by comparing the molecular properties of mammalian melanopsin to those of invertebrate melanopsin and visual pigment. Our data show that the Schiff base linking the chromophore retinal to the protein is more susceptive to spontaneous cleavage in mammalian melanopsins. We also find this stability is highly diversified between mammalian species, being particularly unstable for human melanopsin. Through mutagenesis analyses, we find that this diversified stability is mainly due to parallel amino acid substitutions in extracellular regions. We propose that the different stability of the retinal attachment in melanopsins may contribute to functional tuning of non-visual photoreception in mammals.  相似文献   
38.
In this review, our current understanding of the species Escherichia coli and its persistence in the open environment is examined. E. coli consists of six different subgroups, which are separable by genomic analyses. Strains within each subgroup occupy various ecological niches, and can be broadly characterized by either commensalistic or different pathogenic behaviour. In relevant cases, genomic islands can be pinpointed that underpin the behaviour. Thus, genomic islands of, on the one hand, broad environmental significance, and, on the other hand, virulence, are highlighted in the context of E. coli survival in its niches. A focus is further placed on experimental studies on the survival of the different types of E. coli in soil, manure and water. Overall, the data suggest that E. coli can persist, for varying periods of time, in such terrestrial and aquatic habitats. In particular, the considerable persistence of the pathogenic E. coli O157:H7 is of importance, as its acid tolerance may be expected to confer a fitness asset in the more acidic environments. In this context, the extent to which E. coli interacts with its human/animal host and the organism''s survivability in natural environments are compared. In addition, the effect of the diversity and community structure of the indigenous microbiota on the fate of invading E. coli populations in the open environment is discussed. Such a relationship is of importance to our knowledge of both public and environmental health.  相似文献   
39.
This research presents the results of constructing and parameterizing an individual-based model of spatiotemporal dynamics of mixed forest stands. The model facilitates computerized experiments with forest stands having different combinations of species and age structures. These forest stands grow on temperate areas where light is the main system-forming factor that shapes and develops forest ecosystems. The model TEMFORM (TEMperate FORests Model) is developed with few equations and parameters, most of which can be estimated using standard forest inventory data. Parameterization of the model used the growth tables of a set of basic forest-forming species in Far East Russia. Simulation results of the development of the natural single- and mixed-species stands and the effects of different types of disturbances on the stand dynamics and compositions are presented.  相似文献   
40.
Bile micelles play an important role in oral absorption of low‐solubility compounds. Bile micelles can affect solubility, dissolution rate, and permeability. For the pH–solubility profile in bile micelles, the HendersonHasselbalch equation should be modified to take bile‐micelle partition into account. For the dissolution rate, in the NernstBrunner equation, the effective diffusion coefficient in bile‐micelle media should be used instead of the monomer diffusion coefficient. The diffusion coefficient of bile micelles is 8‐ to 18‐fold smaller than that of monomer molecules. For permeability, the effective diffusion coefficient in the unstirred water layer adjacent to the epithelial membrane, and the free fraction at the epithelial membrane surface should be taken into account. The importance of these aspects is demonstrated here using several in vivo and clinical oral‐absorption data of low‐solubility model compounds. Using the theoretical equations, the food effect on oral absorption is further discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号