首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13978篇
  免费   1348篇
  国内免费   927篇
  2024年   37篇
  2023年   330篇
  2022年   348篇
  2021年   477篇
  2020年   581篇
  2019年   740篇
  2018年   713篇
  2017年   598篇
  2016年   696篇
  2015年   621篇
  2014年   684篇
  2013年   1540篇
  2012年   580篇
  2011年   610篇
  2010年   536篇
  2009年   586篇
  2008年   686篇
  2007年   656篇
  2006年   632篇
  2005年   563篇
  2004年   544篇
  2003年   505篇
  2002年   473篇
  2001年   332篇
  2000年   316篇
  1999年   247篇
  1998年   248篇
  1997年   224篇
  1996年   170篇
  1995年   148篇
  1994年   122篇
  1993年   103篇
  1992年   104篇
  1991年   59篇
  1990年   49篇
  1989年   39篇
  1988年   29篇
  1987年   25篇
  1986年   16篇
  1985年   28篇
  1984年   52篇
  1983年   36篇
  1982年   45篇
  1981年   35篇
  1980年   22篇
  1979年   15篇
  1978年   16篇
  1977年   14篇
  1975年   6篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
271.
Theranostics cover emerging technologies for cell biomarking for disease diagnosis and targeted introduction of drug ingredients to specific malignant sites. Theranostics development has become a significant biomedical research endeavor for effective diagnosis and treatment of diseases, especially cancer. An efficient biomarking and targeted delivery strategy for theranostic applications requires effective molecular coupling of binding ligands with high affinities to specific receptors on the cancer cell surface. Bioaffinity offers a unique mechanism to bind specific target and receptor molecules from a range of non‐targets. The binding efficacy depends on the specificity of the affinity ligand toward the target molecule even at low concentrations. Aptamers are fragments of genetic materials, peptides, or oligonucleotides which possess enhanced specificity in targeting desired cell surface receptor molecules. Aptamer–target binding results from several inter‐molecular interactions including hydrogen bond formation, aromatic stacking of flat moieties, hydrophobic interaction, electrostatic, and van der Waals interactions. Advancements in Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has created the opportunity to artificially generate aptamers that specifically bind to desired cancer and tumor surface receptors with high affinities. This article discusses the potential application of molecular dynamics (MD) simulation to advance aptamer‐mediated receptor targeting in targeted cancer therapy. MD simulation offers real‐time analysis of the molecular drivers of the aptamer‐receptor binding and generate optimal receptor binding conditions for theranostic applications. The article also provides an overview of different cancer types with focus on receptor biomarking and targeted treatment approaches, conventional molecular probes, and aptamers that have been explored for cancer cells targeting.  相似文献   
272.
The pandemic outbreaks of coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), spread all over the world in a short period of time. Efficient identification of the infection by SARS‐CoV‐2 has been one of the most important tasks to facilitate all the following counter measurements in dealing with the infectious disease. In Taiwan, a COVID‐19 Open Science Platform adheres to the spirit of open science: sharing sources, data, and methods to promote progress in academic research while corroborating findings from various disciplines has established in mid‐February 2020, for collaborative research in support of the development of detection methods, therapeutics, and a vaccine for COVID‐19. Research priorities include infection control, epidemiology, clinical characterization and management, detection methods (including viral RNA detection, viral antigen detection, and serum antibody detection), therapeutics (neutralizing antibody and small molecule drugs), vaccines, and SARS‐CoV‐2 pathogenesis. In addition, research on social ethics and the law are included to take full account of the impact of the COVID‐19 virus.  相似文献   
273.
A direct HPLC method was developed for the enantioseparation of pantoprazole using macrocyclic glycopeptide-based chiral stationary phases, along with various methods to determine the elution order without isolation of the individual enantiomers. In the preliminary screening, four macrocyclic glycopeptide-based chiral stationary phases containing vancomycin (Chirobiotic V), ristocetin A (Chirobiotic R), teicoplanin (Chirobiotic T), and teicoplanin-aglycone (Chirobiotic TAG) were screened in polar organic and reversed-phase mode. Best results were achieved by using Chirobiotic TAG column and a methanol-water mixture as mobile phase. Further method optimization was performed using a face-centered central composite design to achieve the highest chiral resolution. Optimized parameters, offering baseline separation (resolution = 1.91 ± 0.03) were as follows: Chirobiotic TAG stationary phase, thermostated at 10°C, mobile phase consisting of methanol/20mM ammonium acetate 60:40 v/v, and 0.6 mL/min flow rate. Enantiomer elution order was determined using HPLC hyphenated with circular dichroism (CD) spectroscopy detection. The online CD signals of the separated pantoprazole enantiomers at selected wavelengths were compared with the structurally analogous esomeprazole enantiomer. For further verification, the inline rapid, multiscan CD signals were compared with the quantum chemically calculated CD spectra. Furthermore, docking calculations were used to investigate the enantiorecognition at molecular level. The molecular docking shows that the R-enantiomer binds stronger to the chiral selector than its antipode, which is in accordance with the determined elution order on the column—S- followed by the R-isomer. Thus, combined methods, HPLC-CD and theoretical calculations, are highly efficient in predicting the elution order of enantiomers.  相似文献   
274.
The pro/N‐degron pathway is an evolved protein degradation pathway through the ubiquitin‐proteasome system. It is a vital pathway to attain protein homeostasis inside the liver cells with varying glucose levels. N‐terminal proline exists in more than 300 proteins in Saccharomyces cerevisiae, but only three of them are the gluconeogenic enzymes; isocitrate lyase (Icl1), fructose‐1,6‐bisphosphatase (Fbp1), and malate dehydrogenase (Mdh2). The present in silico study aims to structurally illustrate the binding of Icl1 enzyme to Gid4 ligase concerning its peers; Fbp1 and Mdh2. Based on the molecular docking scores and interactions, one can attribute the binding stability of Gid4 with degrons, to peptides of length six up to eight from the N‐terminal. Moreover, the percent change in the docking score provides a rationale for the unique Gid4‐Icl11‐4 interaction. The present study provides insights on the binding attitude of Gid4 ligase to degrons of different lengths, so one will consider in designing peptidomimetics to target Gid4 ligase.  相似文献   
275.
Lectins are a group of proteins of non‐immune origin recognized for their ability to bind reversibly to carbohydrates. Researchers have been intrigued by oligosaccharides and glycoconjugates for their involvement as mediators of complex cellular events and then many biotechnological applications of lectins are based on glycocode decoding and their activities. Here, we report a structural and biological study of a ConA‐like mannose/glucose‐specific lectin from Canavalia bonariensis seeds, CaBo. More specifically, we evaluate the binding of CaBo with α‐methyl‐D‐mannoside (MMA) and mannose‐1,3‐α‐D‐mannose (M13) and the resultant in vivo effects on a rat model of acute inflammation. A virtual screening was also carried out to cover a larger number of possible bindings of CaBo. In silico analysis demonstrated the stability of CaBo interaction with mannose‐type ligands, and the lectin was able to induce acute inflammation in rats with the participation of the carbohydrate recognition domain (CRD) and histamine release. These results confirm the ability of CaBo to interact with hybrid and high‐mannose N‐glycans, supporting the hypothesis that CaBo's biological activity occurs primarily through its interaction with cell surface glycosylated receptors.  相似文献   
276.
Molecular recognition displayed by naturally occurring receptors has continued to inspire new innovations aimed at developing systems that can mimic this natural phenomenon. Since 1930s, a technology called molecular imprinting for producing biomimetic receptors has been in place. In this technology, tailor made binding sites that selectively bind a given target analyte (also called template) are incorporated in a polymer matrix by polymerizing functional monomers and cross‐linking monomers around a target analyte followed by removal of the analyte to leave behind cavities specific to the analyte. The success of the imprinting process is defined by two main figures of merit, that is, the imprinting factor, and selectivity, which are determined by comparing the amount of target analyte or structural analogue bound by the molecularly imprinted polymer (MIP) and the nonimprinted polymer (NIP). NIP is a control synthesized alongside the MIP but in the absence of the template. However, questions arise on whether these figures of merit are reliable measures of the imprinting effect because of the significant differences between the MIP and the NIP in terms of their physical and chemical characteristics. Therefore, this review critically looks into this subject, with a view of defining the best approaches for determining the imprinting effect.  相似文献   
277.
278.
Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate‐specific sequences containing tyrosine (~90 kinases) and those that phosphorylate either serine or threonine (~395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C‐lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide‐substrate binding to Src using paramagnetic‐relaxation‐enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C‐terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off‐target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity.  相似文献   
279.
Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox proteins and enzymes. A common tool used in the biomedical community to analyze such interactions is the Adaptive Poisson‐Boltzmann Solver (APBS) software, which was developed to solve the equations of continuum electrostatics for large biomolecular assemblages. Numerous applications exist for using APBS in the biomedical community including analysis of protein ligand interactions and APBS has enjoyed widespread adoption throughout the biomedical community. Currently, typical use of the full APBS toolset is completed via the command line followed by visualization using a variety of two‐dimensional external molecular visualization software. This process has inherent limitations: visualization of three‐dimensional objects using a two‐dimensional interface masks important information within the depth component. Herein, we have developed a single application, UnityMol‐APBS, that provides a dual experience where users can utilize the full range of the APBS toolset, without the use of a command line interface, by use of a simple graphical user interface (GUI) for either a standard desktop or immersive virtual reality experience.  相似文献   
280.
Molecular docking of peptides to proteins can be a useful tool in the exploration of the possible peptide binding sites and poses. CABS‐dock is a method for protein–peptide docking that features significant conformational flexibility of both the peptide and the protein molecules during the peptide search for a binding site. The CABS‐dock has been made available as a web server and a standalone package. The web server is an easy to use tool with a simple web interface. The standalone package is a command‐line program dedicated to professional users. It offers a number of advanced features, analysis tools and support for large‐sized systems. In this article, we outline the current status of the CABS‐dock method, its recent developments, applications, and challenges ahead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号