首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  国内免费   2篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   7篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
11.

Background and Aims

The phenotypes of grasses show differences depending on growth conditions and ontogenetic stage. Understanding these responses and finding suitable mathematical formalizations are an essential part of the development of plant and crop models. Usually, a marked change in architecture between juvenile and adult plants is observed, where dimension and shape of leaves are likely to change. In this paper, the plasticity of leaf shape is analysed according to growth conditions and ontogeny.

Methods

Leaf shape of Triticum aestivum, Hordeum vulgare and Zea mays cultivars grown under varying conditions was measured using digital image processing. An empirical leaf shape model was fitted to measured shape data of single leaves. Obtained values of model parameters were used to analyse the patterns in leaf shape.

Key Results

The model was able to delineate leaf shape of all studied species. The model error was small. Differences in leaf shape between juvenile and adult leaves in T. aestivum and H. vulgare were observed. Varying growth conditions impacted leaf dimensions but did not impact leaf shape of the respective species.

Conclusions

Leaf shape of the studied T. aestivum and H. vulgare cultivars was remarkably stable for a comparable ontogenetic stage (leaf rank), but differed between stages. Along with other aspects of grass architecture, leaf shape changed during the transition from juvenile to adult growth phase. Model-based analysis of leaf shape is a method to investigate these differences. Presented results can be integrated into architectural models of plant development to delineate leaf shape for different species, cultivars and environmental conditions.  相似文献   
12.
Penetration and distribution of thiocolchicoside from a commercially available foam (Miotens® 0.25%, w/v) through human excised full-thickness skin were evaluated using two different in vitro apparatus: a Franz diffusion cell and a Saarbruecken penetration model-based cell. In order to evaluate the intrinsic capability of the drug to penetrate into the skin, a simple drug aqueous solution prepared at the same drug concentration as Miotens® was also tested. Results showed that both apparatus were suitable to study thiocolchicoside penetration into human skin. Penetrated drug amounts were comparable using the two apparatus, probably because skin acts as “sink” for the drug. Miotens® was found to significantly promote thiocolchicoside accumulation into full human skin thickness in comparison with the simple drug solution. The mixture of propylene glycol and propylene glycol diperlargonate contained into Miotens® foam has been proven to be effective to promote penetration of thiocolchicoside into human skin.  相似文献   
13.
14.
Fault tolerance in parallel systems has traditionally been achieved through a combination of redundancy and checkpointing methods. This notion has also been extended to message-passing systems with user-transparent process checkpointing and message logging. Furthermore, studies of multiple types of rollback and recovery have been reported in literature, ranging from communication-induced checkpointing to pessimistic and synchronous solutions. However, many of these solutions incorporate high overhead because of their inability to utilize application level information.This paper describes the design and implementation of MPI/FT, a high-performance MPI-1.2 implementation enhanced with low-overhead functionality to detect and recover from process failures. The strategy behind MPI/FT is that fault tolerance in message-passing middleware can be optimized based on an application's execution model derived from its communication topology and parallel programming semantics. MPI/FT exploits the specific characteristics of two parallel application execution models in order to optimize performance. MPI/FT also introduces the self-checking thread that monitors the functioning of the middleware itself. User aware checkpointing and user-assisted recovery are compatible with MPI/FT and complement the techniques used here.This paper offers a classification of MPI applications for fault tolerant MPI purposes and MPI/FT implementation discussed here provides different middleware versions specifically tailored to each of the two models studied in detail. The interplay of various parameters affecting the cost of fault tolerance is investigated. Experimental results demonstrate that the approach used to design and implement MPI/FT results in a low-overhead MPI-based fault tolerant communication middleware implementation.  相似文献   
15.
Modeling tools related to the musculoskeletal system have been previously developed. However, the integration of the real underlying functional joint behavior is lacking and therefore available kinematic models do not reasonably replicate individual human motion. In order to improve our understanding of the relationships between muscle behavior, i.e. excursion and motion data, modeling tools must guarantee that the model of joint kinematics is correctly validated to ensure meaningful muscle behavior interpretation. This paper presents a model-based method that allows fusing accurate joint kinematic information with motion analysis data collected using either marker-based stereophotogrammetry (MBS) (i.e. bone displacement collected from reflective markers fixed on the subject's skin) or markerless single-camera (MLS) hardware. This paper describes a model-based approach (MBA) for human motion data reconstruction by a scalable registration method for combining joint physiological kinematics with limb segment poses. The presented results and kinematics analysis show that model-based MBS and MLS methods lead to physiologically-acceptable human kinematics. The proposed method is therefore available for further exploitation of the underlying model that can then be used for further modeling, the quality of which will depend on the underlying kinematic model.  相似文献   
16.

Background and Aims

Genetic markers can be used in combination with ecophysiological crop models to predict the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance in given environments. The objectives of this study were to explore the use of crop models to design markers and virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress.

Methods

Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and drought conditions and in order to design virtual ideotypes for those conditions.

Key Results

To account for genotypic yield differences, it was necessary to parameterize the model for differences in an additional trait ‘total crop nitrogen uptake’ (Nmax) among the ILs. Genetic variation in Nmax had the most significant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosynthesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251 recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had 10–36 % more yield than those based on markers for yield per se.

Conclusions

This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-based crop modelling in developing new plant types with high yields. The approach can provide more markers for selection programmes for specific environments whilst also allowing for prioritization. Crop modelling is thus a powerful tool for marker design for improved rice yields and for ideotyping under contrasting conditions.  相似文献   
17.
Abstract

Statistical inference on accumulation curves is considered from a design-based perspective. Preliminaries on probabilistic sampling of plants and species are given, emphasizing the fundamental role of independent replications of the sampling scheme. The role of rarefaction curves as a tool for making inference on the effectiveness of the sampling procedures to compile accurate species lists is outlined. Design-based and model-based inference are discussed and compared. Some future developments for design-based inference are considered.  相似文献   
18.
19.
This paper deals with the effects of agronomic practices on parasite life cycles, and the design of integrated crop protection strategies. Cropping systems have a large effect on the size of the primary inoculum and its localisation, on the development and spread of epidemics, and on the coordination of the life cycle of cultivated plants and that of their parasites. They can disrupt ecological equilibria, either favouring or disfavouring the pathogens. By combining information concerning the effects of agricultural techniques on diseases and the physiological effects of diseases on growth and crop production, it is now possible to develop new crop management systems, in which the use of non-chemical methods for preventing diseases is a priority. However, the current knowledge need to be completed by studies on other scales, particularly of the effect of cropping systems on the genetics of disease populations integrating more completely the 'long-term' dimension of sustainable agriculture.  相似文献   
20.
Defining populations and identifying ecological and life-history characteristics affecting genetic structure is important for understanding species biology and hence, for managing threatened or endangered species or populations. In this study, populations of the world's largest indigenous Atlantic salmon (Salmo salar) stock were first inferred using model-based clustering methods, following which life-history and habitat variables best predicting the genetic diversity of populations were identified. This study revealed that natal homing of Atlantic salmon within the Teno River system is accurate at least to the tributary level. Generally, defining populations by main tributaries was observed to be a reasonable approach in this large river system, whereas in the mainstem of the river, the number of inferred populations was fewer than the number of distinct sampling sites. Mainstem and headwater populations were genetically more diverse and less diverged, while each tributary fostered a distinct population with high genetic differentiation and lower genetic diversity. Population structure and variation in genetic diversity among populations were poorly explained by geographical distance. In contrast, age-structure, as estimated by the proportion of multisea-winter spawners, was the most predictive variable in explaining the variation in the genetic diversity of the populations. This observation, being in agreement with theoretical predictions, emphasizes the essence of large multisea-winter females in maintaining the genetic diversity of populations. In addition, the unique genetic diversity of populations, as estimated by private allele richness, was affected by the ease of accessibility of a site, with more difficult to access sites having lower unique genetic diversity. Our results show that despite this species' high capacity for migration, tributaries foster relatively closed populations with little gene flow which will be important to consider when developing management strategies for the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号