首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4528篇
  免费   644篇
  国内免费   438篇
  2024年   17篇
  2023年   72篇
  2022年   115篇
  2021年   144篇
  2020年   222篇
  2019年   201篇
  2018年   211篇
  2017年   177篇
  2016年   167篇
  2015年   231篇
  2014年   239篇
  2013年   328篇
  2012年   151篇
  2011年   227篇
  2010年   200篇
  2009年   222篇
  2008年   247篇
  2007年   228篇
  2006年   239篇
  2005年   187篇
  2004年   197篇
  2003年   177篇
  2002年   168篇
  2001年   125篇
  2000年   116篇
  1999年   91篇
  1998年   83篇
  1997年   72篇
  1996年   67篇
  1995年   44篇
  1994年   65篇
  1993年   51篇
  1992年   53篇
  1991年   26篇
  1990年   31篇
  1989年   38篇
  1988年   26篇
  1987年   25篇
  1986年   31篇
  1985年   60篇
  1984年   55篇
  1983年   43篇
  1982年   39篇
  1981年   29篇
  1980年   24篇
  1979年   13篇
  1978年   12篇
  1977年   9篇
  1976年   6篇
  1975年   6篇
排序方式: 共有5610条查询结果,搜索用时 298 毫秒
221.
222.
223.
224.
The 22q11.2 deletion syndrome (22q11DS) is characterized by high rates of psychotic symptoms and schizophrenia, making this condition a promising human model for studying risk factors for psychosis. We explored the predictive value of ultra high risk (UHR) criteria in a sample of patients with 22q11DS. We also examined the additional contribution of socio‐demographic, clinical and cognitive variables to predict transition to psychosis within a mean interval of 32.5 ± 17.6 months after initial assessment. Eighty‐nine participants with 22q11DS (age range: 8‐30 years; mean 16.1 ± 4.7) were assessed using the Structured Interview for Psychosis‐Risk Syndromes. Information on Axis I diagnoses, internalizing and externalizing symptoms, level of functioning and IQ was also collected. At baseline, 22 (24.7%) participants met UHR criteria. Compared to those without a UHR condition, they had a significantly lower functioning, more frequent anxiety disorders, and more severe psychopathology. Transition rate to psychosis was 27.3% in UHR and 4.5% in non‐UHR participants. Cox regression analyses revealed that UHR status significantly predicted conversion to psychosis. Baseline level of functioning was the only other additional predictor. This is the first study investigating the predictive value of UHR criteria in 22q11DS. It indicates that the clinical path leading to psychosis is broadly comparable to that observed in other clinical high‐risk samples. Nevertheless, the relatively high transition rate in non‐UHR individuals suggests that other risk markers should be explored in this population. The role of low functioning as a predictor of transition to psychosis should also be investigated more in depth.  相似文献   
225.
CaS:Ce3+ is an efficient green‐emitting (535 nm) phosphor, excitable with blue light (450–470 nm) and was synthesized via a solid‐state reaction method by heating under a reducing atmosphere. The luminescent properties, photoluminescent (PL) excitation and emission of the phosphor were analyzed by spectrofluorophotometry. The excitation and emission peaks of the CaS:Ce3+ phosphor lay in the visible region, which made them relevant for light‐emitting diode (LED) application for the generation of white light. Judd‐Oflet parameters were calculated and revealed that green light emitted upon blue illumination. The prepared phosphor had strong blue absorption at 470 nm and a broad green emission band range from 490–590 nm with the peak at 537 nm. The characteristics of the CaS:Ce3+ phosphor make it suitable for use as a wavelength tunable green emitting phosphor for three band white LEDs pumped by a blue LED (470 nm). The Commission International de l'Eclairage co‐ordinates were calculated by a spectrophotometric method using the spectral energy distribution (0.304, 0.526) and confirm the green emission. The potential application of this phosphor is as a phosphor‐converted white light‐emitting diode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
226.
A series of Eu3+‐, Ce3+‐, Dy3+‐ and Tb3+‐doped (Y,Gd)BO3 phosphors was synthesized by a solid‐state diffusion method. X‐Ray diffraction confirmed their hexagonal structure and the scanning electron microscopy results showed crystalline particles. The excitation spectra revealed that (Y,Gd)BO3 phosphors doped with Eu3+, Ce3+ , Dy3+ and Tb3+ are effectively excited with near UV‐light of 395 nm/blue light, 364, 351 and 314 nm, respectively. Photoluminescence spectra of Eu3+‐, Ce3+‐ and Tb3+/Dy3+‐doped phosphor showed intense emission of reddish orange, blue and white light, respectively. The phosphor Y0.60Gd0.38BO3:Ce0.02 showed CIE 1931 color coordinates of (0.158, 0.031) and better color purity compared with commercially available blue BAM:Eu2+ phosphor. The phosphor (Y,Gd)BO3 doped with Eu3+, Dy3+ and Tb3+ showed CIE 1931 color coordinates of (0.667, 0.332), (0.251, 0.299) and (0.333, 0.391) respectively. Significant photoluminescence characteristics of the prepared phosphors indicate that they might serve as potential candidates for blue chip and near‐UV white light‐emitting diode applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
227.
The cytochrome (cyt) b6f complex is involved in the transmembrane redox signaling that triggers state transitions in cyanobacteria and chloroplasts. However, the components and molecular mechanisms are still unclear. In an attempt to solve this long-standing problem, we first focused on the unknown role of a single chlorophyll a (Chla) in cyt b6f with a new approach based on Chla structural properties. Various b6f X-ray crystal structures were analyzed to identify their differences, which correlate with differences in Chla molecular volume. We found that the distance of the Rieske [2Fe-2S] cluster to Chla correlates with the distance between a pair of residues at the Qo-site and the distance between a pair of residues at the opposite membrane side. These correlations were accompanied by the rotation of a key peripheral residue and by changes in the hydrophobic thickness of cyt b6f. Parallel analysis of cyt bc1 crystal structures allowed us to conclude that Chla acts as the crucial redox sensor and transmembrane signal transmitter in b6f for changes in the plastoquinone pool redox state. The hydrophobic mismatch induced by the changed hydrophobic thickness of cyt b6f is the driving force for the structural reorganizations of the photosynthetic apparatus during induction and the progression of state transitions in cyanobacteria and chloroplasts. A mechanism for LHCII kinase activation in chloroplasts is also proposed. Our understanding of the dynamic structural changes in bc-complexes during turnover at the Qo-site and state transitions is augmented by the time-sequence ordering of 56 bc crystal structures.  相似文献   
228.
Prolyl hydroxylase domain‐containing protein 2 (PHD2), as one of the most important regulators of angiogenesis and metastasis of cancer cells, is a promising target for cancer therapy drug design. Progressive studies imply that abnormality in PHD2 function may be due to misfolding. Therefore, study of the PHD2 unfolding pathway paves the way for a better understanding of the influence of PHD2 mutations and cancer cell metabolites on the protein folding pathway. We study the unfolding of the PHD2 catalytic domain using differential scanning calorimetry (DSC), fluorescence spectroscopy, and discrete molecular dynamics simulations (DMD). Using computational and experimental techniques, we find that PHD2 undergoes four transitions along the thermal unfolding pathway. To illustrate PHD2 unfolding events in atomic detail, we utilize DMD simulations. Analysis of computational results indicates an intermediate species in the PHD2 unfolding pathway that may enhance aggregation propensity, explaining mutation‐independent PHD2 malfunction. Proteins 2016; 84:611–623. © 2016 Wiley Periodicals, Inc.  相似文献   
229.
Many epidemics involve plants infected with more than one pathogen, but few experiments address climate change scenarios that influence mixed infections. This study addresses the interactive effects of co‐infection and temperature on disease development in plants of the annual pasture species subterranean clover (Trifolium subterraneum), which is widely sown in different world regions. Bean yellow mosaic virus (BYMV) and the fungus Kabatiella caulivora are two important pathogens causing considerable production losses in pastures containing this species. Both occur together in such pastures causing a severe necrotic disease when mixed infection occurs. Effects of temperature on symptom expression were investigated in subterranean clover plants infected singly or in mixed infection with these pathogens. Plants were maintained in controlled environment rooms at 18°C, 20°C or 22.5°C after sap inoculation with BYMV. K. caulivora conidia suspensions were inoculated to plants once systemic BYMV symptoms developed. Plants were assessed for three disease assessment parameters, dead petioles numbers, marginal leaflet necrosis and overall plant damage. In general, mixed infection caused most severe symptoms, K. caulivora least severe symptoms, and BYMV symptoms of intermediate severity. In single infections, effects of temperature on disease severity differed between pathogens: BYMV symptoms were most pronounced at 18°C, but K. caulivora induced more severe symptoms at 20°C and 22.5°C. In mixed infections, disease severity generally followed the pattern developed with BYMV alone as temperature increased. Also, synergistic increase in disease severity sometimes occurred at 18°C, but increases were only additive at 20°C and 22.5°C. These results reflected the greater BYMV multiplication detected in infected leaves at 18°C compared with 20°C or 22.5°C. Our findings indicate that in rainfed subterranean clover pastures, as global warming progresses disease severity from infection with BYMV and K. caulivora alone may decline or increase, respectively, and mixed infection with them may become less damaging.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号