全文获取类型
收费全文 | 533篇 |
免费 | 35篇 |
国内免费 | 2篇 |
专业分类
570篇 |
出版年
2023年 | 5篇 |
2022年 | 13篇 |
2021年 | 19篇 |
2020年 | 19篇 |
2019年 | 16篇 |
2018年 | 20篇 |
2017年 | 19篇 |
2016年 | 15篇 |
2015年 | 25篇 |
2014年 | 30篇 |
2013年 | 58篇 |
2012年 | 20篇 |
2011年 | 17篇 |
2010年 | 10篇 |
2009年 | 16篇 |
2008年 | 15篇 |
2007年 | 11篇 |
2006年 | 8篇 |
2005年 | 11篇 |
2004年 | 18篇 |
2003年 | 15篇 |
2002年 | 18篇 |
2001年 | 24篇 |
2000年 | 18篇 |
1999年 | 17篇 |
1998年 | 7篇 |
1997年 | 8篇 |
1996年 | 10篇 |
1995年 | 10篇 |
1994年 | 11篇 |
1993年 | 4篇 |
1992年 | 7篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1989年 | 8篇 |
1988年 | 3篇 |
1987年 | 4篇 |
1986年 | 3篇 |
1985年 | 7篇 |
1984年 | 3篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 3篇 |
1975年 | 4篇 |
1974年 | 3篇 |
1973年 | 2篇 |
1970年 | 1篇 |
排序方式: 共有570条查询结果,搜索用时 15 毫秒
11.
Toshiro Ohta Russell Essner Jung-Hwa Ryu Robert E Palazzo Yumi Uetake Ryoko Kuriyama 《The Journal of cell biology》2002,156(1):87-99
By using monoclonal antibodies raised against isolated clam centrosomes, we have identified a novel 135-kD centrosomal protein (Cep135), present in a wide range of organisms. Cep135 is located at the centrosome throughout the cell cycle, and localization is independent of the microtubule network. It distributes throughout the centrosomal area in association with the electron-dense material surrounding centrioles. Sequence analysis of cDNA isolated from CHO cells predicted a protein of 1,145-amino acid residues with extensive alpha-helical domains. Expression of a series of deletion constructs revealed the presence of three independent centrosome-targeting domains. Overexpression of Cep135 resulted in the accumulation of unique whorl-like particles in both the centrosome and the cytoplasm. Although their size, shape, and number varied according to the level of protein expression, these whorls were composed of parallel dense lines arranged in a 6-nm space. Altered levels of Cep135 by protein overexpression and/or suppression of endogenous Cep135 by RNA interference caused disorganization of interphase and mitotic spindle microtubules. Thus, Cep135 may play an important role in the centrosomal function of organizing microtubules in mammalian cells. 相似文献
12.
13.
Zonis J Wilde A 《Biology of the cell / under the auspices of the European Cell Biology Organization》2011,103(9):421-434
Background information. RanGTP, which is generated on chromosomes during mitosis, is required for microtubule spindle assembly. Due to its restricted spatial generation within the cell it has been suggested that RanGTP acts as a spatial cue to organize site‐specific spindle assembly within the cell. However, the absence of a detectable sharp gradient of RanGTP in somatic cells has led to suggestions that it may only act as a spatial cue in large cells and that it may operate as a general activator of the mitotic cytosol in somatic cells. Results. We report that ectopic generation of RanGTP at the plasma membrane stimulates the formation of organized arrays of microtubules at the plasma membrane. Conclusions. These results suggest that the site of RanGTP generation in a mitotic somatic cell can generate critical spatial information that specifies where microtubules grow towards and where microtubules are organized. As RanGTP is normally generated on chromosomes, these results suggest that RanGTP may play an important role in specifying that spindle assembly occurs around chromosomes. 相似文献
14.
Vladimir A. Timoshevskiy Atashi Sharma Igor V. Sharakhov Maria V. Sharakhova 《Journal of visualized experiments : JoVE》2012,(67)
Fluorescent in situ hybridization (FISH) is a technique routinely used by many laboratories to determine the chromosomal position of DNA and RNA probes. One important application of this method is the development of high-quality physical maps useful for improving the genome assemblies for various organisms. The natural banding pattern of polytene and mitotic chromosomes provides guidance for the precise ordering and orientation of the genomic supercontigs. Among the three mosquito genera, namely Anopheles, Aedes, and Culex, a well-established chromosome-based mapping technique has been developed only for Anopheles, whose members possess readable polytene chromosomes 1. As a result of genome mapping efforts, 88% of the An. gambiae genome has been placed to precise chromosome positions 2,3 . Two other mosquito genera, Aedes and Culex, have poorly polytenized chromosomes because of significant overrepresentation of transposable elements in their genomes 4, 5, 6. Only 31 and 9% of the genomic supercontings have been assigned without order or orientation to chromosomes of Ae. aegypti 7 and Cx.
quinquefasciatus 8, respectively. Mitotic chromosome preparation for these two species had previously been limited to brain ganglia and cell lines. However, chromosome slides prepared from the brain ganglia of mosquitoes usually contain low numbers of metaphase plates 9. Also, although a FISH technique has been developed for mitotic chromosomes from a cell line of Ae. aegypti 10, the accumulation of multiple chromosomal rearrangements in cell line chromosomes 11 makes them useless for genome mapping. Here we describe a simple, robust technique for obtaining high-quality mitotic chromosome preparations from imaginal discs (IDs) of 4th instar larvae which can be used for all three genera of mosquitoes. A standard FISH protocol 12 is optimized for using BAC clones of genomic DNA as a probe on mitotic chromosomes of Ae. aegypti and
Cx.
quinquefasciatus, and for utilizing an intergenic spacer (IGS) region of ribosomal DNA (rDNA) as a probe on An. gambiae chromosomes. In addition to physical mapping, the developed technique can be applied to population cytogenetics and chromosome taxonomy/systematics of mosquitoes and other insect groups. 相似文献
15.
Ryuzaburo Yuki Mari Hagino Sachi Ueno Takahisa Kuga Youhei Saito Yasunori Fukumoto Noritaka Yamaguchi Naoto Yamaguchi Yuji Nakayama 《Journal of cellular and molecular medicine》2021,25(3):1677-1687
v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs. 相似文献
16.
17.
A Century of B Chromosomes in Plants: So What? 总被引:3,自引:0,他引:3
BACKGROUND: Supernumerary B chromosomes (Bs) are a major source of intraspecific variation in nuclear DNA amounts in numerous species of plants. They favour large genomes, and create polymorphisms for DNA variation in natural populations. By studying Bs we can gain useful knowledge about the organization, function and evolution of genomes. There are also significant biological questions concerning the origin and structural organization of Bs, and the way in which these selfish elements can establish themselves by exploiting the replicative machinery of their host genome nucleus. SCOPE: It is a sine qua non that Bs originate from the A chromosomes, in a variety of ways. We can study their modes of drive and ask how it is that chromosomes which apparently lack genes can have control over their own drive process which leads to their survival in natural populations. Molecular cytogenetic studies are opening up new avenues of investigation. Population equilibria for B frequencies are determined by a balance between accumulation and harmful effects. Bs are also subject to meiotic loss due to polysomy and to elimination at meiosis as univalents. These balancing forces can be seen in the context of host/parasite interaction, based on a dissection of the genetic elements in both As and Bs (in maize) which interact to bring about a stable equilibrium, at least for a snapshot in time. CONCLUSIONS: Aside from their intrinsic enigmatic properties, B chromosomes make useful experimental tools to study genome organization. Thus far they have not been exploited for their applications, other than through the use of A-B translocations used for gene mapping in maize; but there are opportunities to use them to modulate the frequency and distribution of recombination, to diploidize allopolyploids, to study centromeres and to be developed as plant artificial chromosomes; given that they can be structurally modified and their inheritance stabilized. 相似文献
18.
Mitotic catastrophe is an oncosuppressive mechanism that senses mitotic failure leading to cell death or senescence. As such, it protects against aneuploidy and genetic instability, and its induction in cancer cells by exogenous agents is currently seen as a promising therapeutic end point. Apoptin, a small protein from Chicken Anemia Virus (CAV), is known for its ability to selectively induce cell death in human tumor cells. Here, we show that apoptin triggers p53-independent abnormal spindle formation in osteosarcoma cells. Approximately 50% of apoptin-positive cells displayed non-bipolar spindles, a 10-fold increase as compared to control cells. Besides, tumor cells expressing apoptin are greatly limited in their progress through anaphase and telophase, and a significant drop in mitotic cells past the meta-to-anaphase transition is observed. Time-lapse microscopy showed that mitotic osteosarcoma cells expressing apoptin displayed aberrant mitotic figures and/or had a prolonged cycling time during mitosis. Importantly, all dividing cells expressing apoptin eventually underwent cell death either during mitosis or during the following interphase. We infer that apoptin can efficiently trigger cell death in dividing human tumor cells through induction of mitotic catastrophe. However, the killing activity of apoptin is not only confined to dividing cells, as the CAV-derived protein is also able to trigger caspase-3 activation and apoptosis in non-mitotic cancer cells. 相似文献
19.
Andreas Ritter Mourad Sanhaji Alexandra Friemel Susanne Roth Udo Rolle Frank Louwen Juping Yuan 《Cell cycle (Georgetown, Tex.)》2015,14(23):3755-3767
Mitotic centromere-associated kinesin (MCAK) is the best characterized member of the kinesin-13 family and plays important roles in microtubule dynamics during mitosis. Its activity and subcellular localization is tightly regulated by an orchestra of mitotic kinases, such as Aurora B. It is well known that serine 196 of MCAK is the major phosphorylation site of Aurora B in Xenopus leavis extracts and that this phosphorylation regulates its catalytic activity and subcellular localization. In the current study, we have addressed the conserved phosphorylation site serine 192 in human MCAK to characterize its function in more depth in human cancer cells. Our data confirm that S192 is the major phosphorylation site of Aurora B in human MCAK and that this phosphorylation has crucial roles in regulating its catalytic activity and localization at the kinetochore/centromere region in mitosis. Interfering with this phosphorylation leads to a delayed progression through prometa- and metaphase associated with mitotic defects in chromosome alignment and segregation. We show further that MCAK is involved in directional migration and invasion of tumor cells, and interestingly, interference with the S192 phosphorylation affects this capability of MCAK. These data provide the first molecular explanation for clinical observation, where an overexpression of MCAK was associated with lymphatic invasion and lymph node metastasis in gastric and colorectal cancer patients. 相似文献
20.
Viktória Fisi Emese Kátai Péter Bogner Attila Miseta 《Cell cycle (Georgetown, Tex.)》2016,15(9):1227-1233
Paclitaxel (taxol) is a chemotherapeutic agent frequently used in combination with other anti-neoplastic drugs. It is most effective during the M phase of the cell-cycle and tends to cause synchronization in malignant cells lines. In this study, we investigated whether timed, sequential treatment based on the cell-cycle characteristics could be exploited to enhance the cytotoxic effect of paclitaxel. We characterized the cell-cycle properties of a rapidly multiplying cell line (Sp2, mouse myeloma cells) by propidium-iodide DNA staining such as the lengths of various cell cycle phases and population duplication time. Based on this we designed a paclitaxel treatment protocol that comprised a primary and a secondary, timed treatment. We found that the first paclitaxel treatment synchronized the cells at the G2/M phase but releasing the block by stopping the treatment allowed a large number of cells to enter the next cell-cycle by a synchronized manner. The second treatment was most effective during the time when these cells approached the next G2/M phase and was least effective when it occurred after the peak time of this next G2/M phase. Moreover, we found that after mixing Sp2 cells with another, significantly slower multiplying cell type (Jurkat human T-cell leukemia) at an initial ratio of 1:1, the ratio of the two different cell types could be influenced by timed sequential paclitaxel treatment at will. Our results demonstrate that knowledge of the cell-cycle parameters of a specific malignant cell type could improve the effectivity of the chemotherapy. Implementing timed chemotherapeutic treatments could increase the cytotoxicity on the malignant cells but also decrease the side-effects since other, non-malignant cell types will have different cell-cycle characteristic and be out of synch during the treatment. 相似文献