首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6704篇
  免费   508篇
  国内免费   282篇
  7494篇
  2024年   25篇
  2023年   128篇
  2022年   204篇
  2021年   246篇
  2020年   258篇
  2019年   308篇
  2018年   292篇
  2017年   176篇
  2016年   176篇
  2015年   243篇
  2014年   451篇
  2013年   469篇
  2012年   334篇
  2011年   322篇
  2010年   264篇
  2009年   281篇
  2008年   312篇
  2007年   331篇
  2006年   291篇
  2005年   275篇
  2004年   231篇
  2003年   211篇
  2002年   188篇
  2001年   201篇
  2000年   141篇
  1999年   134篇
  1998年   113篇
  1997年   114篇
  1996年   93篇
  1995年   75篇
  1994年   62篇
  1993年   76篇
  1992年   57篇
  1991年   50篇
  1990年   27篇
  1989年   31篇
  1988年   43篇
  1987年   27篇
  1986年   21篇
  1985年   29篇
  1984年   27篇
  1983年   17篇
  1982年   26篇
  1981年   13篇
  1980年   21篇
  1979年   17篇
  1978年   13篇
  1977年   9篇
  1975年   9篇
  1973年   12篇
排序方式: 共有7494条查询结果,搜索用时 0 毫秒
81.
Although nitric oxide (NO) was identified more than 150 years ago and its effects were clinically tested in the form of nitroglycerine, it was not until the decades of 1970-1990 that it was described as a gaseous signal transducer. Since then, a canonical pathway linked to cyclic GMP (cGMP) as its quintessential effector has been established, but other modes of action have emerged and are now part of the common body of knowledge within the field. Classical (or canonical) signaling involves the selective activation of soluble guanylate cyclase, the generation of cGMP, and the activation of specific kinases (cGMP-dependent protein kinases) by this cyclic nucleotide. Nonclassical signaling alludes to the formation of NO-induced posttranslational modifications (PTMs), especially S-nitrosylation, S-glutathionylation, and tyrosine nitration. These PTMs are governed by specific biochemical mechanisms as well as by enzymatic systems. In addition, a less classical but equally important pathway is related to the interaction between NO and mitochondrial cytochrome c oxidase, which might have important implications for cell respiration and intermediary metabolism. Cross talk trespassing these necessarily artificial conceptual boundaries is progressively being identified and hence an integrated systems biology approach to the comprehension of NO function will probably emerge in the near future.  相似文献   
82.
83.
The study of aging is critical for a better understanding of many age-related diseases. The free radical theory of aging, one of the prominent aging hypotheses, holds that during aging, increasing reactive oxygen species in mitochondria causes mutations in the mitochondrial DNA and damages mitochondrial components, resulting in senescence. Understanding a mitochondrial gene expression profile and its relationship to mitochondrial function becomes an important step in understanding aging. The objective of the present study was to determine mRNA expression of mitochondrial-encoded genes in brain slices from C57BL6 mice at four ages (2, 12, 18, and 24 months) and to determine how these altered mitochondrial genes influence age-related changes, including oxidative damage and cytochrome c in apoptosis. Using northern blot analysis, in situ hybridization, and immunofluorescence analyses, we analyzed changes in the expression of mitochondrial RNA encoding the mitochondrial genes, oxidative damage marker, 8-hydroxyguanosine (8-OHG), and cytochrome c in brain slices from the cortex of C57BL6 mice at each of the four ages. Our northern blot analysis revealed an increased expression of mitochondrial-encoded genes in complexes I, III, IV, and V of the respiratory chain in 12- and 18-month-old C57BL6 mice compared to 2-month-old mice, suggesting a compensatory mechanism that allows the production of proteins involved in the electron transport chain. In contrast to the up-regulation of mitochondrial genes in 12- and 18-month-old C57BL6 mice, mRNA expression in 24-month-old C57BL6 mice was decreased, suggesting that compensation maintained by the up-regulated genes cannot be sustained and that the down-regulation of expression results in the later stage of aging. Our in situ hybridization analyses of mitochondrial genes from the hippocampus and the cortex revealed that mitochondrial genes were over-expressed, suggesting that these brain areas are critical for mitochondrial functions. Our immunofluorescence analysis of 8-OHG and cytochrome c revealed increased 8-OHG and cytochrome c in 12-month-old C57BL6 mice, suggesting that age-related mitochondrial oxidative damage and apoptosis are associated with mitochondrial dysfunction. Our double-labeling analysis of in situ hybridization of ATPase 6 and our immunofluorescence analysis of 8-OHG suggest that specific neuronal populations undergo oxidative damage. Further, double-labeling analysis of in situ hybridization of ATPase 6 and immunofluorescence analysis of cytochrome c suggest cytochrome c release is related to mitochondrial dysfunction in the aging C57BL6 mouse brain. This study also suggests that these mitochondrial gene expression changes may relate to the role of mitochondrial dysfunction, oxidative damage, and cytochrome c in aging and in age-related diseases such as Alzheimer's disease and Parkinson's disease.  相似文献   
84.
Organ failure induced by endotoxic shock has recently been associated with affected mitochondrial function. In this study, effects of in vivo lipopolysaccharide-challenge on protein patterns of rat liver mitochondria in treated animals versus controls were studied by two-dimensional electrophoresis (differential image gel electrophoresis). Significant upregulation was found for ATP-synthase alpha chain and superoxide dismutase [Mn]. Our data suggest that endotoxic shock mediated changes in the mitochondrial proteome contribute to a compensatory reaction (adaptation to endotoxic shock) rather than to a mechanism of cell damage.  相似文献   
85.
The mitochondrial genome of animal cells is currently under intense investigation by molecular, evolutionary, and population biologists. This review summarizes the available information on the molecular biology of nematode mitochondrial DNA and explains how the fundamental knowledge obtained from these basic studies may be applied to nematode systematics, evolution, and diagnostics.  相似文献   
86.
Molecular species delimitation methods are efficient tools to identify species, including the discovery of new taxa and cryptic organisms, thus being useful to biodiversity studies. In the present work, 16S mitochondrial sequences and cytochrome oxidase I (COI) were used to evaluate the richness of species in the genus Scinax and Ololygon from a biodiversity hotspot in Atlantic Forest. A total of 109 specimens formally belonging to eight species of Scinax and three species of Ololygon were collected in 13 localities along the state of Bahia (northeastern Brazil) and one site in Espírito Santo (southeastern Brazil). Of the Scinax species collected in this study, three were morphologically differentiated from other described species and identified as putative new species (Scinax sp.1, Scinax sp.2 and Scinax sp.3). The species delimitations were inferred using three different methods: ABGD, PTP and mPTP which allowed recognizing 11 Scinax species and five Ololygon species. Scinax sp. 1, Scinax sp. 2 and Scinax sp. 3, have been confirmed as new putative species and Ololygon argyreornata possibly contains cryptic species. We suggest additional studies, including morphological and bioacoustic data to validate these new putative species.  相似文献   
87.
《Cell》2022,185(20):3705-3719.e14
  1. Download : Download high-res image (258KB)
  2. Download : Download full-size image
  相似文献   
88.
《Cell》2022,185(25):4703-4716.e16
  1. Download : Download high-res image (150KB)
  2. Download : Download full-size image
  相似文献   
89.
Recent evidence has verified the cardioprotective actions of irisin in different diseases models. However, the beneficial action of irisin on hypoxia-reoxygenation (HR) injury under high glucose stress has not been described. Herein our research investigated the influence of irisin on HR-triggered cardiomyocyte death under high glucose stress. HR model was established in vitro under high glucose treatment. The results illuminated that HR injury augmented apoptotic ratio of cardiomyocyte under high glucose stress; this effect could be abolished by irisin via modulating mitochondrial function. Irisin treatment attenuated cellular redox stress, improved cellular ATP biogenetics, sustained mitochondria potential, and impaired mitochondrion-related cell death. At the molecular levels, irisin treatment activated the 5′-adenosine monophosphate-activated protein kinase (AMPK) pathway and the latter protected cardiomyocyte and mitochondria against HR injury under high glucose stress. Altogether, our results indicated a novel role of irisin in HR-treated cardiomyocyte under high glucose stress. Irisin-activated AMPK pathway and the latter sustained cardiomyocyte viability and mitochondrial function.  相似文献   
90.
Iron overload is common in elderly people which is implicated in the disease progression of osteoarthritis (OA), however, how iron homeostasis is regulated during the onset and progression of OA and how it contributes to the pathological transition of articular chondrocytes remain unknown. In the present study, we developed an in vitro approach to investigate the roles of iron homeostasis and iron overload mediated oxidative stress in chondrocytes under an inflammatory environment. We found that pro-inflammatory cytokines could disrupt chondrocytes iron homeostasis via upregulating iron influx transporter TfR1 and downregulating iron efflux transporter FPN, thus leading to chondrocytes iron overload. Iron overload would promote the expression of chondrocytes catabolic markers, MMP3 and MMP13 expression. In addition, we found that oxidative stress and mitochondrial dysfunction played important roles in iron overload-induced cartilage degeneration, reducing iron concentration using iron chelator or antioxidant drugs could inhibit iron overload-induced OA-related catabolic markers and mitochondrial dysfunction. Our results suggest that pro-inflammatory cytokines could disrupt chondrocytes iron homeostasis and promote iron influx, iron overload-induced oxidative stress and mitochondrial dysfunction play important roles in iron overload-induced cartilage degeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号