首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6160篇
  免费   508篇
  国内免费   276篇
  2024年   23篇
  2023年   115篇
  2022年   178篇
  2021年   220篇
  2020年   213篇
  2019年   286篇
  2018年   256篇
  2017年   181篇
  2016年   186篇
  2015年   217篇
  2014年   388篇
  2013年   447篇
  2012年   284篇
  2011年   302篇
  2010年   234篇
  2009年   249篇
  2008年   280篇
  2007年   314篇
  2006年   272篇
  2005年   265篇
  2004年   222篇
  2003年   192篇
  2002年   166篇
  2001年   195篇
  2000年   132篇
  1999年   135篇
  1998年   110篇
  1997年   115篇
  1996年   94篇
  1995年   77篇
  1994年   59篇
  1993年   74篇
  1992年   58篇
  1991年   51篇
  1990年   29篇
  1989年   33篇
  1988年   46篇
  1987年   24篇
  1986年   17篇
  1985年   31篇
  1984年   25篇
  1983年   18篇
  1982年   28篇
  1981年   15篇
  1980年   21篇
  1979年   17篇
  1978年   12篇
  1976年   5篇
  1975年   6篇
  1973年   11篇
排序方式: 共有6944条查询结果,搜索用时 15 毫秒
201.

Background

Stem cell therapy is a strategy far from being satisfactory and applied in the clinic. Poor survival and differentiation levels of stem cells after transplantation or neural injury have been major problems. Recently, it has been recognized that cell death-relevant proteins, notably those that operate in the core of the executioner apoptosis machinery are functionally involved in differentiation of a wide range of cell types, including neural cells.

Scope of review

This article will review recent studies on the mechanisms underlying the non-apoptotic function of mitochondrial and death receptor signaling pathways during neural differentiation. In addition, we will discuss how these major apoptosis-regulatory pathways control the decision between differentiation, self-renewal and cell death in neural stem cells and how levels of activity are restrained to prevent cell loss as final outcome.

Major conclusions

Emerging evidence suggests that, much like p53, caspases and Bcl-2 family members, the two prime triggers of cell death pathways, death receptors and mitochondria, may influence proliferation and differentiation potential of stem cells, neuronal plasticity, and astrocytic versus neuronal stem cell fate decision.

General significance

A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation as an alternative to cell death will surely contribute to improve neuro-replacement strategies.  相似文献   
202.

Background

Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function.

Methods

A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out.

Results

TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization.

Conclusions

TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON.

General significance

Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.  相似文献   
203.
204.
A previous study on the evolutionary patterns of Tarentola mauritanica demonstrated that low levels of mitochondrial diversity observed in the European populations relative to nuclear markers were consistent with a selective sweep hypothesis. In order to unravel the mitochondrial evolutionary history in this European population and two other lineages of T. mauritanica (Iberian and North African clades), variation within 22 nearly complete mitogenomes was analyzed. Surprisingly, each clade seems to have a distinct evolutionary history; with both the European and Iberian clades presenting a decrease of polymorphism, which in the former is consistent with departure from neutrality of the mtDNA (positive or background selection), but in the latter seems to be the result of a bottleneck after a population expansion. The pattern exhibited by the North African clade seems to be a consequence of adaptation to certain mtDNA variants by positive selection.  相似文献   
205.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   
206.

Objectives

Progressive dementia is a rare phenotypic feature of female X-ALD carriers. Even rarer is the additional presence of further risk factors for dementia, such as diabetes, hypothyroidism, and hepatopathy. We report a unique female X-ALD carrier presenting with severe, progressive dementia, paraspasticity, sphincteric dysfunction, and multisystem disease.

Case report

A 79 years-old female with a history of strumectomy, diabetes, hepatopathy, hypothyroidism, arterial hypertension, hiatal hernia, left retinal ablation, ovariectomy, hysterectomy, osteoporosis, bilateral hip endoprosthesis, and neurogenic bladder dysfunction developed slowly progressive cognitive decline since age of 77 years. She had been identified as a female carrier of X-ALD in 12/2010 upon a family screening. At age of 79 years she presented with severe dementia, anxiety, unsteadiness, helplessness, hypertelorism, exaggerated patella tendon reflexes, reduced Achilles tendon reflexes, club feet, contractures of the ankles, the knees, and the hips, and the inability to stay or walk. Cerebral CT showed diffuse atrophy, demyelination periventricularly, small lacunas in the basal ganglia, and small calcifications of the basal ganglia and the temporal lobe on the right side. Differential diagnoses of dementia were considered but were all excluded upon the clinical presentation, blood chemical investigations, imaging studies, and the pattern of neuropsychological deficits.

Conclusions

With progression of the disease manifesting X-ALD carriers may develop progressive severe dementia, severe paraspasticity, and sphincteric dysfunction. Female carriership of X-ALD can be a differential diagnosis of dementia.  相似文献   
207.
Termites from the genus Odontotermes are known to contain numerous species complexes that are difficult to tell apart morphologically or with mitochondrial DNA sequences. We developed markers for one such cryptic species complex, that is, Odontotermes srinakarinensis sp. nov. from Maxwell Hill Forest Reserve (Perak, Malaysia), and characterised them using a sample of 41 termite workers from three voucher samples from the same area. We then genotyped 150 termite individuals from 23 voucher samples/colonies of this species complex from several sites in Peninsular Malaysia. We analysed their population by constructing dendograms from the proportion of shared-alleles between individuals and genetic distances between colonies; additionally, we examined the Bayesian clustering pattern of their genotype data. All methods of analysis indicated that there were two distinct clusters within our data set. After the morphologies of specimens from each cluster were reexamined, we were able to separate the two species morphologically and found that a single diagnostic character found on the mandibles of its soldiers could be used to separate the two species quite accurately. The additional species in the clade was identified as Odontotermes denticulatus after it was matched to type specimens at the NHM London and Cambridge Museum of Zoology.  相似文献   
208.
The generation of human induced pluripotent stem cells (hiPSCs) requires the collection of donor tissue, but clinical circumstances in which the interests of patients have highest priority may compromise the quality and availability of cells that are eventually used for reprogramming. Here we compared (i) skin biopsies stored in standard physiological salt solution for up to two weeks (ii) blood outgrowth endothelial cells (BOECs) isolated from fresh peripheral blood and (iii) children's milk teeth lost during normal replacement for their ability to form somatic cell cultures suitable for reprogramming to hiPSCs. We derived all hiPSC lines using the same reprogramming method (a conditional (FLPe) polycistronic lentivirus) and under similar conditions (same batch of virus, fetal calf serum and feeder cells). Skin fibroblasts could be reprogrammed robustly even after long-term biopsy storage. Generation of hiPSCs from juvenile dental pulp cells gave similar high efficiencies, but that of BOECs was lower. In terms of invasiveness of biopsy sampling, biopsy storage and reprogramming efficiencies skin fibroblasts appeared best for the generation of hiPSCs, but where non-invasive procedures are required (e.g. for children and minors) dental pulp cells from milk teeth represent a valuable alternative.  相似文献   
209.
210.
Tentatively dated, the Plio‐/Pleistocene origin of the ancient Lake Ohrid on the Balkan Peninsula makes it the oldest ancient lake in Europe. Given the surface area of the lake and the adjusted endemicity rate, it may be also defined as the most diverse of all the ancient lakes in the world. From all the animal groups endemic to this lake, gammarids are amongst the most scarcely known in terms of their diversity and phylogenetic relationships. Partial DNA sequences of two mitochondrial genes, cytochrome oxidase subunit I (cox1) and 16S ribosomal RNA (16S rRNA) of eight known endemic Gammarus species from the Lake Ohrid valley were analysed. Phylogenetic analyses showed that endemic Gammarus species comprise an ancient species flock, with Gammarus sketi from the feeder springs being their sister taxon outside the lake. Amongst the species inhabiting the lake, Gammarus solidus and Gammarus salemaai are morphologically and molecularly well defined. By contrast, Gammarus ochridensis, Gammarus parechiniformis, Gammarus lychnidensis, and Gammarus stankokaramani revealed high discrepancy between morphological and genetic data. None of these morphospecies form a monophyletic clade and a significant degree of apparent gene flow occurs between them. This could be caused by incomplete lineage sorting and/or hybridization events. Two novel mtDNA lineages were found within the lake, possibly constituting two new species (Gammarus sp. 1 and Gammarus sp. 2). Molecular clock analysis showed that the split between G. sketi and the Gammarus species flock from the lake occurred approximately 5–7 Mya, whereas within the flock there were at least two intralacustrine radiations: one estimated at 2–3 Mya and the second at less than 1 Mya. The first one could be associated with the origin of the lake and the second with the lake water‐level fluctuations during Pleistocene. © 2013 The Linnean Society of London  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号