首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10270篇
  免费   949篇
  国内免费   756篇
  2024年   37篇
  2023年   291篇
  2022年   426篇
  2021年   569篇
  2020年   496篇
  2019年   581篇
  2018年   463篇
  2017年   390篇
  2016年   361篇
  2015年   462篇
  2014年   681篇
  2013年   722篇
  2012年   472篇
  2011年   434篇
  2010年   343篇
  2009年   396篇
  2008年   430篇
  2007年   476篇
  2006年   456篇
  2005年   445篇
  2004年   374篇
  2003年   364篇
  2002年   307篇
  2001年   294篇
  2000年   215篇
  1999年   189篇
  1998年   152篇
  1997年   160篇
  1996年   117篇
  1995年   115篇
  1994年   92篇
  1993年   100篇
  1992年   77篇
  1991年   69篇
  1990年   41篇
  1989年   39篇
  1988年   60篇
  1987年   35篇
  1986年   25篇
  1985年   37篇
  1984年   27篇
  1983年   24篇
  1982年   27篇
  1981年   15篇
  1980年   19篇
  1979年   17篇
  1978年   12篇
  1977年   7篇
  1975年   6篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Libraries of cosmid and plasmid clones covering the entire region of mtDNA from the liverwortMarchantia polymorpha were constructed. These clones were used for the determination of the complete nucleotide sequence of the liverwort mtDNA totally 186,608 bp (GenBank no. M68929) and including genes for 3 species of ribosomal RNAs, 29 genes for 27 species of transfer RNAs, and 30 genes for functionally known proteins (16 ribosomal proteins, 3 subunits of cytochromec oxidase, apocytochromeb protein, 3 subunits of H+-ATPase, and 7 subunits of NADH ubiquinone oxidoreductase). The genome also contains 32 unidentified open reading frames. Thus the complete nucleotide sequences from both chloroplast and mitochondrial genomes have been determined in the same organism. Plasmid clones are available upon the request. Gene names are represented according to Lonsdale and Leaver (1988) with modifications recommended by Lonsdale (personal communication).  相似文献   
42.
Mitochondrial DNA from the fall armyworm, Spodoptera frugiperda (J.E. Smith), was cloned and characterized using restriction enzyme mapping. Genome size is approximately 16.3 kilobase (Kb), consistent with that of most animals. Three fragments, 8.1 Kb, 6.2 Kb, and 2.0 Kb, were produced by digestion with restriction enzyme Xbal and cloned into a pUC19 vector. Twenty-nine restriction enzymes were used to generate a detailed physical restriction enzyme map of the three cloned fragments. These data represent the first detailed characterization of a lepidopteran mitochondrial genome. © 1992 Wiley-Liss, Inc.  相似文献   
43.
44.
45.
DNA reassociation kinetics were used to determine nuclear genome organization and complexity inAgardhiella subulata (Gigartinales, Rhodophyta). Results indicate the presence of three second-order components corresponding to fast (22%), intermediate (68%) and slow (10%) fractions. Thus, the genome consists of 90% repetitive sequences. Microspectrophotoometry with the DNA-localizing fluorochrome DAPI was used to confirm ploidy level differences in the gametophytic and tetrasporophytic phases. Results indicate that meiosis occurs during tetrasporogenesis. Comparison of mean nuclear DNA (If) values to chicken erythrocytes (RBC) resulted in an estimate of 0.9 pg/2C genome forAgardhiella. Karyological studies using aceto-orcein revealed a chromosome complement of 2N = 44 in carposporangia and the presence of 22 bivalents during diakinesis of tetraspore mother cells.  相似文献   
46.
The results of genome analysis of five hybrids, viz.Elymus patagonicus ×Hordeum procerum, E. patagonicus ×H. tetraploidum, E. angulatus ×H. jubatum, E. angulatus ×H. lechleri, andE. angulatus ×H. parodii, are reported. The genomic constitution ofHordeum tetraploidum andH. jubatum is best given as H1H1H2H2, ofH. lechleri andH. parodii as H1H1H2H2H4H4, ofH. procerum as H1H1H2H2H3H3, and ofElymus patagonicus andE. angulatus as SSH1H1H2H2.  相似文献   
47.
Physical mapping of the mitochondrial DNA of the wild-typeSaccharomyces cerevisiae strainRXII revealed that most of the restriction sites as well as the location of the apocytochromeb gene were identical in comparison with the known maps of the mitochondrial genome in otherSaccharomyces cerevisiae strains. In the middle of theSalI linearized map of theRXII mitochondrial DNA, a deletion was detected which resulted in the loss of twoEcoRI and oneBamHI restriction sites. The corresponding region, however, exists in most other laboratory strains ofSaccharomyces mapped so far. This region overlaps the introns aI2 and aI3 surrounding exon A3 sequences of the subunit 1 of the cytochrome oxidase gene. The nucleotide sequence of the subunit 1 gene showed that theBamHI site was located close to the aI3-A4 intron-exon junction and the distalEcoRI site close to the aI2-A2 boundary. I therefore conclude that these two introns are deleted in the mitochondrial genome of strainRXII. The exon A3 must have been conserved since this strain was respiratory competent. This result, while being a good example of the morphological diversity of a genome with the same function, may contribute to an understanding of the role of introns in the mitochondrial split genes in yeast.  相似文献   
48.
The kinetics and other properties of phosphate-activated glutaminase have for the first time been studied in the crude mitochondrial fraction (P2 fraction) from human brain. The enzyme is for unexplained reasons inactivated postmortem. The enzyme activity decreases by storing the tissue or homogenate at 37 degrees C. The inactivation is not caused by formation of a dialysable inhibiting compound. No large proteolytic degradation has occurred, since the phosphate-activated glutaminase-like immunoreactive band did not disappear during the storage. The molecular weight of the subunit of the enzyme as determined by immunoblots of sodium dodecyl sulfate-treated homogenates from human brain is estimated to be approximately 64 K. The enzyme has been shown to have a pH optimum of 8.6; it is activated by phosphate, inhibited by glutamate, and partially inhibited by ammonia. Double-inverse plots of enzyme activity against phosphate are concave-upward, and more so in the presence of an inhibitor. The inhibition by glutamate appears to be noncompetitive with the substrate glutamine, and competitive with the activator phosphate. These kinetic properties are not significantly different from our earlier observations concerning phosphate-activated glutaminase from pig brain and pig kidney.  相似文献   
49.
Summary A linear 2.3 kb DNA molecule found in maize mitochondria was cloned into pUC8. A natural deletion of this plasmid, found in cmsT and some N (fertile) types of maize plants, was mapped to one end of the plasmid. A minor sequence homology to S-2, another linear mitochondrial plasmid, was detected, as well as more significant sequence homology with chloroplast and maize nuclear DNA. Hybridization to teosinte mitochondrial DNA (mtDNA) revealed the presence of part of the maize plasmid in the high molecular weight mtDNA of the maize relatives. RNA dot hybridization indicates that the plasmid is transcribed in mitochondria. The termini of the 2.3 kb linear plasmid contain inverted repeated sequences; of the first 17 nucleotides of the termini, 16 are identical to the terminal inverted repeats of the linear S plasmids found in the mitochondria of cmsS maize plants.  相似文献   
50.
var1 Gene on the mitochondrial genome of Torulopsis glabrata   总被引:5,自引:0,他引:5  
We have cloned and sequenced a region of the Torulopsis glabrata mitochondrial genome homologous to the Saccharomyces cerevisiae var1 gene (var1Sc). An open reading frame that could encode a protein of 339 amino acids was found with 72.7% amino acid and 85.3% nucleotide sequence homology to the S. cerevisiae var1 gene. The T. glabrata gene (var1Tg) is transcribed yielding two stable RNAs, a more abundant 13.5 S RNA and a less abundant 18 S species. We have also identified a candidate for a T. glabrata var1 protein among mitochondrial translation products labeled in isolated mitochondria. The var1Tg gene is even more A + T-rich (93%) than var1Sc (89.6%) and has conserved the strong codon bias of var1Sc. Major differences between the two sequences were found. Significant among these are that no GC clusters are found in var1Tg and the sequences surrounding each of the sites where known polymorphisms exist in var1Sc have deletions at the corresponding sites in var1Tg. These data are discussed with respect to possible origins of these var1 genes and translocation of GC clusters in S. cerevisiae mitochondrial DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号