首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5319篇
  免费   390篇
  国内免费   227篇
  2024年   21篇
  2023年   95篇
  2022年   157篇
  2021年   181篇
  2020年   187篇
  2019年   251篇
  2018年   219篇
  2017年   144篇
  2016年   146篇
  2015年   191篇
  2014年   328篇
  2013年   371篇
  2012年   250篇
  2011年   255篇
  2010年   205篇
  2009年   211篇
  2008年   239篇
  2007年   262篇
  2006年   234篇
  2005年   230篇
  2004年   192篇
  2003年   168篇
  2002年   147篇
  2001年   179篇
  2000年   116篇
  1999年   117篇
  1998年   97篇
  1997年   101篇
  1996年   80篇
  1995年   67篇
  1994年   50篇
  1993年   59篇
  1992年   46篇
  1991年   42篇
  1990年   24篇
  1989年   25篇
  1988年   38篇
  1987年   22篇
  1986年   14篇
  1985年   23篇
  1984年   21篇
  1983年   16篇
  1982年   23篇
  1981年   12篇
  1980年   17篇
  1979年   15篇
  1978年   10篇
  1976年   5篇
  1975年   6篇
  1973年   11篇
排序方式: 共有5936条查询结果,搜索用时 31 毫秒
991.
Phosphotyrosyl phosphatase activator (PTPA) is decreased in the brains of Alzheimer's disease (AD) and the AD transgenic mouse models. Here, we investigated whether down‐regulation of PTPA affects cell viability and the underlying mechanisms. We found that PTPA was located in the integral membrane of mitochondria, and knockdown of PTPA induced cell apoptosis in HEK293 and N2a cell lines. PTPA knockdown decreased mitochondrial membrane potential and induced Bax translocation into the mitochondria with a simultaneous release of Cyt C, activation of caspase‐3, cleavage of poly (DNA ribose) polymerase (PARP), and decrease in Bcl‐xl and Bcl‐2 protein levels. Over‐expression of Protein phosphatase 2A (PP2A) catalytic subunit (PP2AC) did not rescue the apoptosis induced by PTPA knockdown, and PTPA knockdown did not affect the level of and their phosphorylation of mitogen‐activated protein kinases (MAPKs), indicating that PP2A and MAPKs were not involved in the apoptosis induced by PTPA knockdown. In the cells with over‐expression of tau, PTPA knockdown induced PP2A inhibition and tau hyperphosphorylation but did not cause significant cell death. These data suggest that PTPA deficit causes apoptotic cell death through mitochondrial pathway and simultaneous tau hyperphosphorylation attenuates the PTPA‐induced cell death.

  相似文献   

992.
993.
We examined range‐wide mitochondrial phylogeographical structure in the riverine freshwater turtle Chelodina expansa to determine whether this species exhibits deep genetic divergence between coastal and inland hydrological provinces, as seen in co‐distributed freshwater taxa. We sequenced two mitochondrial loci, genealogical relationships were assessed using a network approach, and relationships among biogeographical regions were tested using analyses of molecular variance. Population history was evaluated using neutrality tests, indices of demographic expansion, and mismatch analyses. Twenty‐one haplotypes were recovered across two mitochondrial haplogroups separated by approximately 4% nucleotide divergence. The haplogroups have discrete geographical boundaries but only partially support a hypothesis of deep divergence between coastal and inland bioregions. The first haplogroup comprises populations from the inland Murray‐Darling Basin and from coastal catchments south of the Mary River in south‐east Queensland. The second haplogroup comprises populations from coastal catchments north of the Mary River. Cryptic phylogeographical barriers separating adjacent coastal populations are congruent with those demonstrated for other freshwater taxa and may result from the combined influences of the Conondale Range and alluvial deposits at the mouth of the Mary River. The findings of the present study demonstrate that freshwater taxa commonly display genetic differentiation within a biogeographical region where no boundaries have been recognized, highlighting the need to uncover cryptic microbiogeographical regions to aid conservation of freshwater biota. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 789–805.  相似文献   
994.
This study presents a detailed phylogeographical analysis of one of the most conspicuous groups of lizards in northwestern Patagonia, the Liolaemus kriegi complex. This region is geographically very complex as a result of Andean orogeny and subsequent volcanism coupled with a long history of glaciations and climatic changes. For 247 individuals we sequenced one mitochondrial gene (cytochrome b) and for a subset we sequenced another mitochondrial gene [12S ribosomal RNA (12S)] and two nuclear fragments [kinesin family member 24 (KIF24) and BA3 ribosomal RNA (BA3)]. We obtained gene trees and mitochondrial and nuclear haploytpe networks, and estimated genetic distances between the main lineages and basic molecular diversity indices. We also performed spatial analysis of molecular variance (SAMOVA) and Bayesian Skyline Plot (BSP) analyses, and concordant patterns from different lines of evidence permitted delimitation of seven lineages: two described species, Liolaemus buergeri and Liolaemus tregenzai; four candidate species, Liolaemus sp. A, Liolaemus sp. B, Liolaemus sp. C, and Liolaemus sp. D; and one lineage that includes all individuals from the geographical range of Liolaemus ceii and L. kriegi, referred to as L. kriegi + L. ceii. We discuss the evolutionary processes that may contribute to the origin of these lineages and their taxonomic and conservation implications. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 256–269.  相似文献   
995.
Although Odonata are a key component of many freshwater ecosystems, their taxonomy and evolutionary history is still far from being well resolved. In the present study, we report the first molecular phylogeny for the Western Palaearctic Cordulegaster genus (Odonata: Anisoptera: Cordulegastridae). We sequenced fragments of both mitochondrial and nuclear genes [cytochrome c oxidase I (COI) and Internal Transcribed Spacer‐1 (ITS‐1)] from eight species and 13 subspecies, from western, southern and central Europe, Turkey, and Morocco. Our data support the existence of two major groups corresponding to the traditional boltonii‐ and bidentata‐groups. Both groups are monophyletic based on COI sequences and the distinctiveness of Cordulegaster princeps, Cordulegaster trinacriae, Cordulegaster picta and Cordulegaster heros relative to Cordulegaster boltonii, and Cordulegaster helladica and Cordulegaster insignis relative to Cordulegaster bidentata, is confirmed. All species are also monophyletic for ITS‐1, with the exception of Cordulegaster helladica buchholzi, which shares the haplotype with C. insignis. Although moderate levels of genetic diversity were found within C. boltonii, there was no clear separation among the four subspecies, with the exception of the populations of Cordulegaster boltonii algirica from North Africa. Similarly, no genetic differentiation was found between the two subspecies of C. bidentata, Cordulegaster bidentata bidentata and Cordulegaster bidenta sicilica. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 49–57.  相似文献   
996.
Chironius is one of the most speciose genera of the South American colubrid snakes. Although the genus represents a well‐known radiation of diurnal racers, its monophyly, affinities with other Neotropical colubrid genera, and intrageneric relationships are open questions. Here, we present a phylogenetic analysis of Chironius based on a data matrix that combines one nuclear (c‐mos) and two mitochondrial (12S and 16S rRNA) genes with 37 morphological characters derived from scutellation, skull, and hemipenial features. Phylogenetic relationships were inferred using maximum parsimony (MP) and maximum likelihood (ML). Our combined morphological and molecular analyses strongly support the monophyly of the genus Chironius and its sister‐group relationship with a clade formed by the genera Dendrophidion and Drymobius. Phylogenetic relationships within the genus Chironius is still controversial, although five clades are retrieved with medium to strong support. © 2014 The Linnean Society of London  相似文献   
997.
Blood–brain barrier (BBB) breakdown and mitochondrial dysfunction have been implicated in the pathogenesis of Alzheimer''s disease (AD), a neurodegenerative disease characterized by cognitive deficits and neuronal loss. Besides vitamin C being as one of the important antioxidants, recently, it has also been reported as a modulator of BBB integrity and mitochondria morphology. Plasma levels of vitamin C are decreased in AD patients, which can affect disease progression. However, investigation using animal models on the role of vitamin C in the AD pathogenesis has been hampered because rodents produce with no dependence on external supply. Therefore, to identify the pathogenic importance of vitamin C in an AD mouse model, we cross-bred 5 familial Alzheimer''s disease mutation (5XFAD) mice (AD mouse model) with ι-gulono-γ-lactone oxidase (Gulo) knockout (KO) mice, which are unable to synthesize their own vitamin C, and produced Gulo KO mice with 5XFAD mice background (KO-Tg). These mice were maintained on either low (0.66 g/l) or high (3.3 g/l) supplementation of vitamin C. We found that the higher supplementation of vitamin C had reduced amyloid plaque burden in the cortex and hippocampus in KO-Tg mice, resulting in amelioration of BBB disruption and mitochondrial alteration. These results suggest that intake of a larger amount of vitamin C could be protective against AD-like pathologies.  相似文献   
998.
Mitochondrial dynamics and quality control have a central role in the maintenance of cellular integrity. Mitochondrial ubiquitin ligase membrane-associated RING-CH (MARCH5) regulates mitochondrial dynamics. Here, we show that mitochondrial adaptation to stress is driven by MARCH5-dependent quality control on acetylated Mfn1. Under mitochondrial stress conditions, levels of Mfn1 were elevated twofold and depletion of Mfn1 sensitized these cells to apoptotic death. Interestingly, overexpression of Mfn1 also promoted cell death in these cells, indicating that a fine tuning of Mfn1 levels is necessary for cell survival. MARCH5 binds Mfn1 and the MARCH5-dependent Mfn1 ubiquitylation was significantly elevated under mitochondrial stress conditions along with an increase in acetylated Mfn1. The acetylation-deficient K491R mutant of Mfn1 showed weak interaction with MARCH5 as well as reduced ubiquitylation. Neither was observed in the acetylation mimetic K491Q mutant. In addition, MARCH5-knockout mouse embryonic fibroblast and MARCH5H43W-expressing HeLa cells lacking ubiquitin ligase activity experienced rapid cell death upon mitochondrial stress. Taken together, a fine balance of Mfn1 levels is maintained by MARCH5-mediated quality control on acetylated Mfn1, which is crucial for cell survival under mitochondria stress conditions.  相似文献   
999.
The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca2+. Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer''s and Parkinson diseases. One key regulator that underlies cell survival and Ca2+ homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca2+ dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca2+ concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca2+ through the InsP3 receptor (InsP3R). The Ca2+ efflux in IRE1α-deficient cells correlates with dissociation of the Ca2+-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α–TRAF2–ASK1 complex. The increased cytosolic concentration of Ca2+ induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca2+ dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca2+ influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca2+ homeostasis and cell survival during ER stress and reveal a previously unknown Ca2+-mediated cell death signaling between the IRE1α–InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.  相似文献   
1000.
Angiogenesis is a complex process that involves the expansion of the pre-existing vascular plexus to enhance oxygen and nutrient delivery and is stimulated by various factors, including hypoxia. Since the process of angiogenesis requires a lot of energy, mitochondria play an important role in regulating and promoting this phenomenon. Besides their roles as an oxidative metabolism base, mitochondria are potential bioenergetics organelles to maintain cellular homeostasis via sensing alteration in oxygen levels. Under hypoxic conditions, mitochondria can regulate angiogenesis through different factors. It has been indicated that unidirectional and bidirectional exchange of mitochondria or their related byproducts between the cells is orchestrated via different intercellular mechanisms such as tunneling nanotubes, extracellular vesicles, and gap junctions to maintain the cell homeostasis. Even though, the transfer of mitochondria is one possible mechanism by which cells can promote and regulate the process of angiogenesis under reperfusion/ischemia injury. Despite the existence of a close relationship between mitochondrial donation and angiogenic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible role of mitochondria concerning angiogenesis, especially the role of mitochondrial transport and the possible relation of this transfer with autophagy, the housekeeping phenomenon of cells, and angiogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号