首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5145篇
  免费   240篇
  国内免费   68篇
  5453篇
  2023年   57篇
  2022年   94篇
  2021年   88篇
  2020年   102篇
  2019年   156篇
  2018年   178篇
  2017年   80篇
  2016年   97篇
  2015年   158篇
  2014年   261篇
  2013年   287篇
  2012年   151篇
  2011年   249篇
  2010年   186篇
  2009年   207篇
  2008年   221篇
  2007年   225篇
  2006年   195篇
  2005年   153篇
  2004年   148篇
  2003年   133篇
  2002年   93篇
  2001年   95篇
  2000年   101篇
  1999年   91篇
  1998年   77篇
  1997年   77篇
  1996年   73篇
  1995年   72篇
  1994年   73篇
  1993年   65篇
  1992年   76篇
  1991年   68篇
  1990年   79篇
  1989年   91篇
  1988年   70篇
  1987年   67篇
  1986年   61篇
  1985年   76篇
  1984年   97篇
  1983年   74篇
  1982年   87篇
  1981年   76篇
  1980年   61篇
  1979年   45篇
  1978年   36篇
  1977年   39篇
  1976年   33篇
  1974年   12篇
  1971年   14篇
排序方式: 共有5453条查询结果,搜索用时 15 毫秒
101.
Lipid droplets (LDs) are ubiquitous cellular organelles for lipid storage which are composed of a neutral lipid core bounded by a protein decorated phospholipid monolayer. Although lipid storage is their most obvious function, LDs are far from inert as they participate in maintaining lipid homeostasis through lipid synthesis, metabolism, and transportation. Furthermore, they are involved in cell signaling and other molecular events closely associated with human disease such as dyslipidemia, obesity, lipodystrophy, diabetes, fatty liver, atherosclerosis, and others. The last decade has seen a great increase in the attention paid to LD biology. Regardless, many fundamental features of LD biology remain obscure. In this review, we will discuss key aspects of LD biology including their biogenesis, growth and regression. We will also summarize the current knowledge about the role LDs play in human disease, especially from the perspective of the dynamics of the associated proteins. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   
102.
Mercury (Hg) exposure remains a major public health concern due to its widespread distribution in the environment. Organic mercurials, such as MeHg, have been extensively investigated especially because of their congenital effects. In this context, studies on the molecular mechanism of MeHg-induced neurotoxicity are pivotal to the understanding of its toxic effects and the development of preventive measures. Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and acetylation are essential for the proper function of proteins and play important roles in the regulation of cellular homeostasis. The rapid and transient nature of many PTMs allows efficient signal transduction in response to stress. This review summarizes the current knowledge of PTMs in MeHg-induced neurotoxicity, including the most commonly PTMs, as well as PTMs induced by oxidative stress and PTMs of antioxidant proteins. Though PTMs represent an important molecular mechanism for maintaining cellular homeostasis and are involved in the neurotoxic effects of MeHg, we are far from understanding the complete picture on their role, and further research is warranted to increase our knowledge of PTMs in MeHg-induced neurotoxicity.  相似文献   
103.
缺硼与低温对黄瓜幼苗—些生理反应的影响   总被引:1,自引:0,他引:1  
营养液培养试验表明,缺硼明显降低黄瓜幼苗植株的生长量,植株叶片细胞质膜K 的渗漏增加,细胞结构受损。此外,叶片中蔗糖和还原糖都明显积累。缺硼的上述反应在低温胁迫(7-8℃,FX25-28℃为对照)时表现更为明显。试验结果表明硼对于细胞膜的完整性具有重要的作用;充分供硼可以减轻低温对细胞膜的伤害。  相似文献   
104.
The major risk factors for non-alcoholic fatty liver disease (NAFLD) are obesity, insulin resistance and dyslipidemia. The cause for progression from the steatosis stage to the inflammatory condition (non-alcoholic steatohepatitis (NASH)) remains elusive at present. Aim of this study was to test whether the different stages of NAFLD as well as the associated metabolic abnormalities can be recreated in time in an overfed mouse model and study the mechanisms underlying the transition from steatosis to NASH.Male C57Bl/6J mice were subjected to continuous intragastric overfeeding with a high-fat liquid diet (HFLD) for different time periods. Mice fed a solid high-fat diet (HFD) ad libitum served as controls. Liver histology and metabolic characteristics of liver, white adipose tisue (WAT) and plasma were studied.Both HFD-fed and HFLD-overfed mice initially developed liver steatosis, but only the latter progressed in time to NASH. NASH coincided with obesity, hyperinsulinemia, loss of liver glycogen and hepatic endoplasmatic reticulum stress. Peroxisome proliferator-activated receptor γ (Pparγ), fibroblast growth factor 21 (Fgf21), fatty acid binding protein (Fabp) and fatty acid translocase (CD36) were induced exclusively in the livers of the HFLD-overfed mice. Inflammation, reduced adiponectin expression and altered expression of genes that influence adipogenic capacity were only observed in WAT of HFLD-overfed mice.In conclusion: this dietary mouse model displays the different stages and the metabolic settings often found in human NAFLD. Lipotoxicity due to compromised adipose tissue function is likely associated with the progression to NASH, but whether this is cause or consequence remains to be established.  相似文献   
105.
In the 35 years since the revelation that short peptides bound to major histocompatibility complex class I and II molecules are the secret of the major histocompatibility complex–restricted nature of T-cell recognition, there has been enormous progress in characterizing the immunopeptidome, the repertoire of peptide presented for immunosurveillance. Here, the major milestones in the journey are marked, the contribution of proteasome-mediated splicing to the immunopeptidome is discussed, and exciting recent findings relating the immunopeptidome to the translatome revealed by ribosome profiling (RiboSeq) is detailed. Finally, what is needed for continued progress is opined about, which includes the infusion of talented young scientists into the antigen-processing field, currently undergoing a renaissance; thanks in part to the astounding success of T-cell–based cancer immunotherapy.  相似文献   
106.
The Drosophila larval neuromuscular junction has recently emerged as a powerful model system to characterize the cellular and molecular events involved in the formation and flexibility of synapses. The combination of molecular, genetic, electrophysiological and anatomical approaches has revealed, for example, the functional significance of the discs-large gene product (a novel synapse-organizing protein) in the nervous system. This protein is involved in the clustering of at least one ion channel and in the structural modification of glutamatergic synapses during target muscle growth. The manipulation of the genes encoding ion channels, components of second-messenger cascades, and cell adhesion molecules is beginning to tease apart the mechanisms underlying structural synaptic plasticity.  相似文献   
107.
Efficient intracellular targeting of drugs and drug delivery systems (DDSs) is a major challenge that should be overcome to enhance the therapeutic efficiency of biopharmaceuticals and other intracellularly-acting drugs. Studies that quantitatively assess the mechanisms, barriers, and efficiency of intracellular drug delivery are required to determine the therapeutic potential of intracellular targeting of nano-delivery systems. In this study we report development and application of a novel ‘IntraCell’ plugin for ImageJ that is useful for quantitative assessment of uptake and intracellular localization of the drug/DDS and estimation of targeting efficiency. The developed plugin is based on threshold-based identification of borders of cell and of the individual organelles on confocal images and pixel-by-pixel analysis of fluorescence intensities.We applied the developed ‘IntraCell’ plugin to investigate uptake and intracellular targeting of novel endoplasmic reticulum (ER)-targeted delivery system based on PLGA nanoparticles decorated with ER-targeting or control peptides and encapsulating antigenic peptide and fluorescent marker. Decoration of the nanoparticles with peptidic residues affected their uptake and intracellular trafficking in HeLa cells, indicating that the targeting peptide was identified as ER-targeting signal by the intracellular trafficking mechanisms in HeLa cells and that these mechanisms can handle nano-DDS of the size comparable to some intracellular vesicles (hundreds of nanometers in diameter).We conclude that decoration of nanoparticles with peptidic residues affects their intracellular localization and trafficking and can be potentially used for intracellularly-targeted drug delivery. ‘IntraCell’ plugin is an useful tool for quantitative assessment of efficiency of uptake and intracellular drug targeting. In combination with other experimental approaches, it will be useful for the development of intracellularly-targeted formulations with enhanced and controlled drug pharmacological activities, such as delivery of antigenic peptides for anticancer vaccination and for other applications.  相似文献   
108.
To what extent do corresponding transmembrane helices in related integral membrane proteins have different membrane-insertion characteristics? Here, we compare, side-by-side, the membrane insertion characteristics of the 12 transmembrane helices in the adenosine triphosphate-binding cassette (ABC) transporters, P-glycoprotein (P-gp) and the cystic fibrosis transmembrane conductance regulator (CFTR). Our results show that 10 of the 12 CFTR transmembrane segments can insert independently into the ER membrane. In contrast, only three of the P-gp transmembrane segments are independently stable in the membrane, while the majority depend on the presence of neighboring loops and/or transmembrane segments for efficient insertion. Membrane-insertion characteristics can thus vary widely between related proteins.  相似文献   
109.
Erythrocytes from patients with familial lecithin:cholesterol acyltransferase (LCAT) deficiency have been shown to exhibit an increase in membrane fluidity which is surprisingly small in view of the extensive alterations both in membrane lipicl composition (namely, an elevation in cholesterol and phosphatidylcholine contents as well as a decrease in phosphatidylethanolamine) and in the functional properties of these cells. In the hope of deriving some information concerning the interrelationship between the structural and functional abnormalities, we have used the spin probe 5-doxyl stearic acid to investigate the temperature-dependent fluidity properties of red cells from two patients with a hereditary hemolytic syndrome (HHS) whose red cells are also characterized by qualitatively similar alterations in phosphatidylcholine and phosphatidylethanolamine but, unlike those in LCAT deficiency, have relatively normal levels of membrane cholesterol. A small increase in membrane fluidity of HHS erythrocytes equivalent to that previously observed in LCAT deficiency was found, indicating that membrane cholesterol level does not exert an important modulatory influence on membrane fluidity in these cells. It is concluded that while the distinct patterns of structural and functional erythrocyte alterations in these two disorders cannot be explained on the basis of differences in bulk membrane fluidity, the marginally increased fluidity may underlie the abnormalities in osmotic fragility and membrane p-nitrophenylphosphatase activity which are shared in common by both types of modified red cells.  相似文献   
110.
Homogenates of the posterior latissimus dorsi muscle, a phasic muscle, were fractionated by a one-step zonal centrifugation technique into four major organelle populations and cytoplasmic constituents. These were: (1) Plasma membrane fragments with a modal equilibrium density of 1.10 and containing 5′-nucleotidase, alkaline phosphodiesterase, p-nitrophenylphosphatase and acid phosphatase (β-glycerophosphate was used as the substrate). (2) Sarcoplasmic reticular fragments which could be further subdivided into calcium transport vesicles, with a modal equilibrium density of 1.16, that exhibited calcium uptake; K+-ATPase; leucyl-β-naphthylamidase; acid phosphodiesterase; acid phosphatase (using cytidine monophosphate as the substrate); and sarcoplasmic reticular lysosomes, with a modal equilibrium density of 1.18, possessing dipeptidyl-aminopeptidase II, cathepsin D, α-glucosidase, N-acetyl-β-glucosaminidase, and NADH oxidase activity. (3) Mitochondria with a modal equilibrium density of 1.21. (4) Catalase-containing vesicles with a modal equilibrium density of 1.22; and cytoplasmic constituents (modal density of 1.25) with phosphorylase, pyruvate kinase, myosin-ATPase, aldolase, and protein and RNA content. The purity of these organelles was equal to or better than previous efforts, with a 30-fold purification achieved for 5′-nucleotidase and alkaline phosphodiesterase. These results lend support to the hypothesis that the sarcoplasmic reticulum of phasic muscle, in addition to its specialized role in excitation-contraction coupling, represents a multifunctional membrane system, and that, similar to the smooth endoplasmic reticulum of other cells, it includes some membrane-bound lysosomal enzymes and NADH oxidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号