首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2672篇
  免费   125篇
  国内免费   60篇
  2023年   63篇
  2022年   63篇
  2021年   86篇
  2020年   57篇
  2019年   76篇
  2018年   62篇
  2017年   58篇
  2016年   37篇
  2015年   70篇
  2014年   90篇
  2013年   119篇
  2012年   94篇
  2011年   94篇
  2010年   70篇
  2009年   101篇
  2008年   120篇
  2007年   132篇
  2006年   122篇
  2005年   87篇
  2004年   116篇
  2003年   89篇
  2002年   92篇
  2001年   65篇
  2000年   67篇
  1999年   63篇
  1998年   57篇
  1997年   48篇
  1996年   57篇
  1995年   58篇
  1994年   54篇
  1993年   42篇
  1992年   37篇
  1991年   49篇
  1990年   43篇
  1989年   48篇
  1988年   34篇
  1987年   22篇
  1986年   28篇
  1985年   22篇
  1984年   22篇
  1982年   23篇
  1981年   20篇
  1980年   14篇
  1979年   13篇
  1978年   16篇
  1977年   12篇
  1976年   9篇
  1973年   8篇
  1971年   8篇
  1970年   6篇
排序方式: 共有2857条查询结果,搜索用时 519 毫秒
171.
Therian mammals (marsupials and eutherians) rely on a placenta for embryo survival. All mammals have a yolk sac, but while both chorio-allantoic and chorio-vitelline (yolk sac) placentation can occur, most marsupials only develop a yolk sac placenta. Insulin (INS) is unusual in that it is the only gene that is imprinted exclusively in the yolk sac placenta. Marsupials, therefore, provide a unique opportunity to examine the conservation of INS imprinting in mammalian yolk sac placentation. Marsupial INS was cloned and its imprint status in the yolk sac placenta of the tammar wallaby, Macropus eugenii, examined. In two informative individuals of the eight that showed imprinting, INS was paternally expressed. INS protein was restricted to the yolk sac endoderm, while insulin receptor, IR, protein was additionally expressed in the trophoblast. INS protein increased during late gestation up to 2 days before birth, but was low the day before and on the day of birth. The conservation of imprinted expression of insulin in the yolk sac placenta of divergent mammalian species suggests that it is of critical importance in the yolk sac placenta. The restriction of imprinting to the yolk sac suggests that imprinting of INS evolved in the chorio-vitelline placenta independently of other tissues in the therian ancestor of marsupials and eutherians.  相似文献   
172.
The olfactory epithelium (OE) is derived from the olfactory placode (OP) during mouse development. At embryonic day (E) 10.0-E10.5, “early neurogenesis” occurs in the OE, which includes production of pioneer neurons that emigrate out of the OE and other early-differentiated neurons. Around E12.5, the OE becomes organized into mature pseudostratified epithelium and shows “established neurogenesis,” in which olfactory receptor neurons (ORNs) are differentiated from basal progenitors. Little is known about the molecular pathway of early neurogenesis. The homeodomain protein Six1 is expressed in all OP cells and neurogenic precursors in the OE. Here we show that early neurogenesis is severely disturbed despite the unaltered expression of Mash1 at E10.5 in the Six1-deficient mice (Six1−/−). Expression levels of neurogenin1 (Ngn1) and NeuroD are reduced and those of Hes1 and Hes5 are augmented in the OE of Six1/− at E10.5. Pioneer neurons and cellular aggregates, which are derived from the OP/OE and situated in the mesenchyme between the OE and forebrain, are completely absent in Six1−/−. Moreover, ORN axons and the gonadotropin-releasing hormone-positive neurons fail to extend and migrate to the forebrain, respectively. Our study indicates that Six1 plays critical roles in early neurogenesis by regulating Ngn1, NeuroD, Hes1, and Hes5.  相似文献   
173.
Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program.  相似文献   
174.
In larval lamprey, descending brain neurons, which regenerate their axons following spinal cord injury, were isolated and examined in cell culture to identify some of the factors that regulate neurite outgrowth. Focal application of 5 mM or 25 mM L-glutamate to single growth cones inhibited outgrowth of the treated neurite, but other neurites from the same neuron were not inhibited, an effect that has not been well studied for neurons in other systems. Glutamate-induced inhibition of neurite outgrowth was abolished by 10 mM kynurenic acid. Application of high potassium media to growth cones inhibited neurite outgrowth, an effect that was blocked by 2 mM cobalt or 100 microM cadmium, suggesting that calcium influx via voltage-gated channels contributes to glutamate-induced regulation of neurite outgrowth. Application of glutamate to growth cones in the presence of 2 microM omega-conotoxin MVIIC (CTX) still inhibited neurite outgrowth, while CTX blocked high potassium-induced inhibition of neurite outgrowth. Thus, CTX blocked virtually all of the calcium influx resulting from depolarization. To our knowledge, this is the first direct demonstration that calcium influx via ligand-gated ion channels can contribute to regulation of neurite outgrowth. Finally, focal application of glutamate to the cell bodies of descending brain neurons inhibited outgrowth of multiple neurites from the same neuron, and this is the first demonstration that multiple neurites can be regulated in this fashion. Signaling mechanisms involving intracellular calcium, similar to those shown here, may be important for regulating axonal regeneration following spinal cord injury in the lamprey.  相似文献   
175.
目的 探讨白质消融性白质脑病中胶质细胞选择性受累而神经元受累轻微的原因。方法EIF2B5-RNAi表达载体转染至人星形胶质细胞和人神经元,检测基础状态下及内质网应激(endoplasmic reticulum stress,ERS)后细胞凋亡和活力,检测参与ERS调控的已知和未知miRNA,筛选EIF2B5-RNAi人星形胶质细胞在ERS后miRNA变化。结果EIF2B5-RNAi人神经元相比,星形胶质细胞自发凋亡及细胞活力下降。较之神经元,更多miRNA参与星形胶质细胞ERS刺激后的调控,EIF2B5-RNAi组参与调控的miRNA数目显著减少。聚类分析发现,5条已知miRNA是通路连接的关键组分。结论 人星形胶质细胞在ERS后可能更加依赖众多促细胞增殖分化的miRNA修复,而EIF2B5-RNAi人星形胶质细胞存在自发凋亡,ERS后严重减少的miRNA可能导致细胞无法存活。  相似文献   
176.
177.
178.
Cerebral ischemic stroke is a devastating neurological disease with high rates of morbidity, disability, and mortality. Lentiviral-mediated mast cell-expressed membrane protein 1 (MCEMP1) has been shown to function in ischemic stroke. Hence, this study aims to explore the function of MCEMP1 specifically in angiogenesis, neuronal proliferation, and apoptosis in rats with cerebral ischemic stroke. Initially, stroke-related genes were obtained through microarray-based gene expression analysis, followed by the construction of a lentiviral vector for MCEMP1 shRNA and establishment of the middle cerebral artery occlusion model. After rats were transfected with MCEMP1 shRNA lentivirus, microvessel density (MVD), expression of MCEMP1, caspase-3, and vascular endothelial growth factor (VEGF), and neuronal proliferation and apoptosis were measured to explore the role of MCEMP1 in cerebral ischemic stroke. MCEMP1 was found to be highly expressed in rats with cerebral ischemic stroke. Silencing of MCEMP1 led to upregulation of VEGF, while downregulation of caspase-3, and resulted in the promotion of MVD in rats with ischemic stroke. Moreover, MCEMP1 silencing could increase Ki67 positive cells and reduce terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive cells in the marginal zone of cortical infarction in rats. Our study provides evidence that silenced MCEMP1 could enhance angiogenesis and suppress neuronal apoptosis in rats with cerebral ischemic stroke, highlighting that MCEMP1 silencing could serve as a therapeutic target for cerebral ischemic stroke treatment.  相似文献   
179.
Responses to the ionotropic glutamate receptor agonist kainate were measured in Retzius cells (RCs) of intact segmental ganglia (in situ), acutely isolated RCs, and cultured RCs (in vitro) of the leech Hirudo medicinalis. RCs in intact ganglia responded to kainate (5–20 μM) with depolarizations up to 30 mV or with an inward current under voltage-clamp that reversed near -10 mV. The membrane conductance increased by a factor of 2.5 at a holding potential of -70 mV in the presence of 20 μM kainate. In RCs in situ the membrane responses to 5 μM kainate increased when applied repeatedly 3-5 times. After this potentiation, the amplitude and time course of the membrane responses to 5 μM kainate were similar to the membrane response to 20 μM kainate. In current-clamp experiments kainate evoked an increase in intracellular calcium concentrations ([Ca2+]¡) only when the membrane depolarized beyond -40 mV. In voltage-clamped RCs at a holding potential of -70 mV, kainate caused no significant rise in [Ca2+]¡, indicating that the Ca2+ permeability of these kainate-gated ion channels appears to be negligible. The potentiation of the kainate-induced responses in RCs in situ was also present in voltage-clamped cells, where no or only small changes in [Ca2+]¡ occurred, suggesting that the underlying mechanism seemed to be independent of intracellular Ca2+ changes. In addition, the potentiation of the kainate-induced membrane responses was unaffected by cyclothiazide (100 μM), concanavalin A (0.5 mg/mL), and in the presence of extracellular low-Ca2+ and high-Mg2+ concentrations to suppress synaptic transmission in the ganglion. During whole-cell patch-clamp recordings (up to 50 min) potentiation remained the same indicating that small intracellular messenger molecules, which would be expected to dissipate, were not likely to be involved in mediating this potentiation. In acutely isolated RCs kainate induced no or only very small voltage responses. A potentiation of the kainate response was never observed in acutely isolated RCs. In cultured RCs (2–7 days in vitro) kainate evoked membrane responses with no apparent potentiation. Cultured RCs also responded with Ca2+ transients only when depolarized beyond -40 mV. The results show that RCs respond differently to kainate when kept isolated in culture compared to RCs in intact ganglia. The mechanism underlying the potentiation of the kainate response of RCs in situ, however, could not yet be identified. © 1996 John Wiley & Sons, Inc.  相似文献   
180.
We used recombinant adenoviruses as a means of expressing exogenous genes in olfactory neurons in vivo. A replication incompetent adenovirus (type 5, Ad5) carrying the reporter gene lacZ, which codes for the enzyme β-galactosidase (β-Gal), was applied in solution to the olfactory epithelia of rats. The expression of lacZ was controlled by the cytomegalovirus immediate-early promoter/enhancer. β-Gal expression was observed 1 day postinfection and was maximal at 3–10 days, although it could be detected for at least 21 days postinfection. Expression patterns were heterogeneous, ranging from a few percent to over 25% of the cells in different regions of both turbinate and septal epithelium. Staining was stronger in the olfactory versus respiratory epithelia. In olfactory epithelium staining was almost entirely restricted to olfactory neurons. β-Gal staining was also observed in the olfactory axons so that nerve bundles could be traced to their targets in the glomerular layer of the olfactory bulb. Intense staining of some glomeruli was evident as long as 21 days postinfection. There was no evidence of cell loss or tissue damage due to viral infection. These results demonstrate that it is possible to use recombinant Ad5 for expressing foreign genes in olfactory neurons. This technique could be used in olfactory neurons to increase expression levels of olfactory specific genes, including the odor receptor, putative guidance and growth molecules, or elements of the transduction cascade, in order to elucidate their biological functions in vivo. © 1996 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号