首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   26篇
  国内免费   2篇
  2023年   7篇
  2022年   6篇
  2021年   6篇
  2020年   11篇
  2019年   10篇
  2018年   17篇
  2017年   12篇
  2016年   12篇
  2015年   18篇
  2014年   19篇
  2013年   43篇
  2012年   17篇
  2011年   20篇
  2010年   7篇
  2009年   15篇
  2008年   20篇
  2007年   20篇
  2006年   19篇
  2005年   30篇
  2004年   18篇
  2003年   17篇
  2002年   30篇
  2001年   19篇
  2000年   8篇
  1999年   9篇
  1998年   18篇
  1997年   9篇
  1996年   15篇
  1995年   12篇
  1994年   14篇
  1993年   18篇
  1992年   10篇
  1991年   15篇
  1990年   10篇
  1989年   9篇
  1988年   6篇
  1987年   11篇
  1986年   9篇
  1985年   5篇
  1984年   10篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有606条查询结果,搜索用时 62 毫秒
91.
Endothelial cells form the inner lining of blood and lymphatic vessels. In mice, only tumors of the blood vessel endothelium (haemangiomas) have been thus far reported. Here we describe a highly reproducible method for the induction of benign tumors of the lymphatic endothelial cells (lymphangiomas) in mice by intraperitoneal injection of incomplete Freund's adjuvant. Morphological and histopathological studies of the lesions revealed the presence of cells at various levels of vascular development. The lymphangiomas developed in the peritoneal cavity and expressed the endothelial markers CD31/PECAM (platelet endothelial cell adhesion molecule), CD54/ICAM-1 (InterCellular Adhesion Molecule-1), and CD102/ICAM-2, as well as the vascular endothelial growth factor (VEGF) receptor Flk-1, the endothelial cell specific receptors Tie-1 and Tie-2 and the lymphatic endothelial cell specific Flt4 receptor as shown byin situhybridization. The Flk-1 and Flt4 receptors were also identified in immunoblots of the tumors and in cells cultured from them. When induced in β-galactosidase knock-in Flt4+/−mice, the tumor endothelia could be stained blue in a number of tumor cells although the staining was of lower intensity than in normal lymphatic vessels. The tumor-derived cells could be propagatedin vitroand they spontaneously differentiated, forming vessel-like structures. Murine lymphangiomas thus represent a highly reproducible and convenient source of lymphatic endothelial cells.  相似文献   
92.
Abstract: Two membrane glycoproteins acting as energy-dependent efflux pumps, mdr -encoded P-glycoprotein (P-gp) and the more recently described multidrug resistance-associated protein (MRP), are known to confer cellular resistance to many cytotoxic hydrophobic drugs. In the brain, P-gp has been shown to be expressed specifically in the capillary endothelial cells forming the blood-brain barrier, but localization of MRP has not been well characterized yet. Using RT-PCR and immunoblot analysis, we have compared the expression of P-gp and Mrp1 in homogenates, isolated capillaries, primary cultured endothelial cells, and RBE4 immortalized endothelial cells from rat brain. Whereas the mdr1a P-gp-encoding mRNA was specifically detected in brain microvessels and mdr1b mRNA in brain parenchyma, mrp1 mRNA was present both in microvessels and in parenchyma. However, Mrp1 was weakly expressed in microvessels. Mrp1 expression was higher in brain parenchyma, as well as in primary cultured brain endothelial cells and in immortalized RBE4 cells. This Mrp1 overexpression in cultured brain endothelial cells was less pronounced when the cells were cocultured with astrocytes. A low Mrp activity could be demonstrated in the endothelial cell primary monocultures, because the intracellular [3H]vincristine accumulation was increased by several MRP modulators. No Mrp activity was found in the cocultures or in the RBE4 cells. We suggest that in rat brain, Mrp1, unlike P-gp, is not predominantly expressed in the blood-brain barrier endothelial cells and that Mrp1 and the mdr1b P-gp isoform may be present in other cerebral cells.  相似文献   
93.
The effect of ischemic preconditioning and superoxide dismutase (SOD) on endothelial glycocalyx and endothelium-dependent vasodilation in the postischemic isolated guinea-pig hearts was examined. Seven groups of hearts were used: group 1 underwent sham aerobic perfusion; group 2 was subjected to 40 min global ischemia without reperfusion; group 3, 40 min ischemia followed by 40 min reperfusion; group 4 was preconditioned with three cycles of 5 min global ischemia followed by 5 min of reperfusion (IPC), prior to 40 min ischemia; group 5 was subjected to IPC prior to standard ischemia/reperfusion; group 6 underwent standard ischemia/reperfusion and SOD infusion (150 U/ml) was begun 5 min before 40 min ischemia and continued during the initial 5 min of the reperfusion period; group 7 was subjected to 80 min aerobic perfusion with NO-synthase inhibitor, L-NAME, to produce a model of endothelial dysfunction independent from the ischemia/reperfusion. Coronary flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were used as measures of endothelium-dependent and endothelium-independent vascular function, respectively. Reduction in coronary flow caused by NO-synthase inhibitor, L-NAME, served as a measure of a basal endothelium-dependent vasodilator tone. After completion of each experimental protocol, the hearts were stained with ruthenium red or lanthanum chloride for electron microscopy evaluation of the endothelial glycocalyx. While ischemia led only to a slightly flocculent appearance of the glycocalyx, in ischemia/reperfused hearts the glycocalyx was disrupted, suggesting that it is the reperfusion injury which leads to the glycocalyx injury. Moreover, the coronary flow responses to ACh and L-NAME were impaired, while the responses to SNP were unchanged in the ischemia/reperfused hearts. The disruption of the glycocalyx and the deterioration of ACh and L-NAME responses was prevented by IPC. In addition, the alterations in the glycocalyx and the impairment of ACh responses were prevented by SOD. The glycocalyx appeared to be not changed in the hearts subjected to 80 min aerobic perfusion with L-NAME. In conclusion: (1) the impairment of the endothelium-dependent coronary vasodilation is paralleled by the endothelial glycocalyx disruption in the postischemic guinea-pig hearts; (2) both these changes are prevented by SOD, suggesting the role of free radicals in the mechanism of their development; (3) both changes are prevented by IPC. We hypothesize, therefore, that alterations in the glycocalyx contribute to the mechanism of the endothelial dysfunction in the postischemic hearts.  相似文献   
94.
This report describes K+ efflux, K+ and Ca2+ uptake responses to endothelins (ET-1 and ET-3) in cultured endothelium derived from capillaries of human brain (HBEC). ET-1 dose dependently increased K+ efflux, K+ and Ca2+ uptake in these cells. ET-1 stimulated K+ efflux occurred prior to that of K+ uptake. ET-3 was ineffective. The main contributor to the ET-1 induced K+ uptake was ouabain but not bumetanide-sensitive (Na+-K+-ATPase and Na+-K+-Cl cotransport activity, respectively). All tested paradigms of ET-1 effects in HBEC were inhibited by selective antagonist of ETA but not ETB receptors and inhibitors of phospholipase C and receptor-operated Ca2+ channels. Activation of protein kinase C (PKC) decreased whereas inhibition of PKC increased the ET-1 stimulated K+ efflux, K+ and Ca2+ uptake in HBEC. The results indicate that ET-1 affects the HBEC ionic transport systems through activation of ETA receptors linked to PLC and modulated by intracellular Ca2+ mobilization and PKC.  相似文献   
95.
Summary Aortic endothelium presents a continuous barrier to diffusion of macromolecules. The cell margins overlap for long distances and there are multiple points of contact between the cell membranes at which the intercellular cleft is reduced to 30–40 Å or less, and free diffusion of lanthanum is impeded at some points of apposition. Macromolecular transport through the endothelium of mouse aorta was studied with the help of horseradish peroxidase (HRP) and bovine milk lactoperoxidase. Following injection of 0.25–0.5 mg of HRP no tracer was detected in the intercellular clefts even though it was seen in plasmalemmal vesicles and subendothelial space. However, when 5 mg of HRP was injected in either 0.05 or 0.5 ml of saline, transport of the enzyme occurred through both the intercellular clefts and via the plasmalemmal vesicles. On the other hand, lactoperoxidase of m.w. 82000 was transported through the plasmalemmal vesicles only. The findings were discussed with reference to the transport of serum lipoproteins and it was suggested that low and high density lipoproteins would be transported via the plasmalemmal vesicles.The excellent technical help of Miss R. Ben-Moshe and Mrs. A. Mandeles is gratefully acknowledged. This study was supported in part by a grant from the Myra Kurland Heart Fund, Chicago, Ill., and by a grant 06-101-1 of the National Institute of Health, United States Public Health Service.  相似文献   
96.
Summary The transport of 125I-labeled serum lipoproteins through the aortic endothelium was studied by radioautography. Rat aorta and heart was perfused in vitro with a medium containing human very low density (VLDL), low density (LDL), high density lipoprotein (HDL), delipidated HDL apolipoprotein or rat HDL. In all lipoproteins more than 95% of the radioactivity was TCA precipitable and lipid radioactivity was from 2–4% in HDL, 4–6% in LDL, 7–15% in VLDL. After 18–60 min of perfusion and wash with unlabeled medium, most of the aortic radioactivity was TCA precipitable and the percent of lipid counts was similar to that in the original lipoprotein. Following perfusion with VLDL, LDL, or HDL the radioautographic reaction was seen over the endothelium, the subendothelial space and the inner media, and was separated by an unlabeled zone from the reaction present over the adventitia. Uniform labeling of the entire wall was found after perfusion with HDL apolipoprotein. The presence of silver grains over endothelial cells in regions rich in plasmalemmal vesicles suggested that these organelles participate in the transport of the labeled lipoprotein, as was shown for lactoperoxidase (Stein and Stein, 1972). The present data indicate that cholesterol may enter the aortic wall as a constituent of lipoprotein particles. Since an HDL particle carries less than 1/20 of the cholesterol present in a LDL particle, it seems that the lower susceptibility of the female to atheromatosis might be related to the higher ratio of HDL to LDL particles in the female serum.The excellent technical help of Miss R. Ben-Moshe, Mrs. A. Mandeles, Mr. G. Hollander and Mrs. Y. Dabach is gratefully acknowledged. This study was supported in part by grants from National Institute of Health (No. 06-101-1), United States Public Health Service; Delegation Generale a la Recherche Scientifique et Technique of the French Government and from the Ministry of Health, the Government of Israel.  相似文献   
97.
Summary An electron microscopic investigation has revealed that the pulmonary lymphatic valves of adult rabbits are not simple duplicatures of the lymphatic vessel wall. They consist of an uninterrupted central connective tissue core, covered on both sides with a single layer of flattened endothelial cells. Near their insertion in the lymphatic vessel wall, the connective tissue core reveals a distinct thickening being composed mainly of collagen bundles. In the other parts it contains mainly elastic fibers and fine filaments, enclosing also some rather peculiar connective tissue cells. Nervous and muscular elements were not observed. The endothelium is continuous and exhibits no open junctions. The valvular basement membrane is better developed than in lymphatic capillaries. The endothelial cells contain numerous cytoplasmic filaments which might be endowed with contractile properties. The nuclei of the endothelial and the connective tissue cells are irregularly spaced and frequently clustered near the free edge of the valve.These ultrastructural features suggest that the function of the lymphatic valves is mainly passive. They are firmly inserted in the lymphatic vessel wall by collagen fibers and their moving parts are slender and elastic. Their endothelium appears relatively impermeable and is firmly attached to the subjacent connective tissue.This study has been supported by a grant from The Council for Tobacco Research—U.S.A.. We thank Professor Robert C. Rosan (Saint Louis University—U.S.A.) for expert advice, R. Janssens for technical, G. Pison and St. Ons for photographic and N. Tyberghien for secretarial assistance.  相似文献   
98.
The lymphatic endothelial receptor LYVE-1 has been implicated in both uptake of hyaluronan (HA) from tissue matrix and in facilitating transit of leukocytes and tumor cells through lymphatic vessels based largely on in vitro studies with recombinant receptor in transfected fibroblasts. Curiously, however, LYVE-1 in lymphatic endothelium displays little if any binding to HA in vitro, and this has led to the conclusion that the native receptor is functionally silenced, a feature that is difficult to reconcile with its proposed in vivo functions. Nonetheless, as we reported recently, LYVE-1 can function as a receptor for HA-encapsulated Group A streptococci and mediate lymphatic dissemination in mice. Here we resolve these paradoxical findings and show that the capacity of LYVE-1 to bind HA is strictly dependent on avidity, demanding appropriate receptor self-association and/or HA multimerization. In particular, we demonstrate the prerequisite of a critical LYVE-1 threshold density and show that HA binding may be elicited in lymphatic endothelium by surface clustering with divalent LYVE-1 mAbs. In addition, we show that cross-linking of biotinylated HA in streptavidin multimers or supramolecular complexes with the inflammation-induced protein TSG-6 enables binding even in the absence of LYVE-1 cross-linking. Finally, we show that endogenous HA on the surface of macrophages can engage LYVE-1, facilitating their adhesion and transit across lymphatic endothelium. These results reveal LYVE-1 as a low affinity receptor tuned to discriminate between different HA configurations through avidity and establish a new mechanistic basis for the functions ascribed to LYVE-1 in matrix HA binding and leukocyte trafficking in vivo.  相似文献   
99.
Reactive oxygen intermediates induce cell injury in a variety of pathophysiological conditions. Human umbilical cord vein endothelial cell (HUVEC) cultures were exposed to 1 or 200 microM H2O2 for 15 min, and observed after 15 min, or 1, 4, 24, or 120 h. Factor VIII and the cytoskeletal proteins vimentin and tubulin were visualized immunocytochemically. Release of lactate dehydrogenase (indices of cell membrane injury) did not increase after H2O2 exposure; nor was cellular expression of factor VIII affected. 200 microM H2O2 induced cell contraction after 15 min which disappeared after 1 and 4 h, but was evident again after 24 h. Immediately after exposure, the filamentous structure of vimentin and tubulin disappeared, but normalized after 1 h. After 120 h, the cytoskeleton filaments were coarsened and disorganized, and an abundance of multinucleated giant cells were observed. Catalase (150 U/ml) abolished all effects of H2O2. One microM H2O2 did not induce any changes in HUVEC. Thus, the present concentrations of H2O2 did not induce cell necrosis or altered expression of factor VIII. Early, reversible cell contraction and depolymerization of cytoskeletal proteins were observed, followed by a delayed contraction and cell atypia after 200 microM H2O2.  相似文献   
100.
We have studied regulatory volume responses of cultured bovine corneal endothelial cells (CBCEC) using light scattering. We assessed the contributions of fluoxetine (Prozac) and bumetanide-sensitive membrane ion transport pathways to such responses by determining K+ efflux and influx. Cells swollen by a 20% hypo-osmotic solution underwent a regulatory volume decrease (RVD) response, which after 6 min restored relative cell volume by 98%. Fluoxetine inhibited RVD recovery; 20 μm by 26%, and 50 μm totally. Fluoxetine had a triphasic effect on K+ efflux; from 20 to 100 μm it inhibited efflux 2-fold, whereas at higher concentrations the efflux first increased to 1.5-fold above the control value, and then decreased again. Cells shrunk by a 20% hyperosmotic solution underwent a regulatory volume increase (RVI) which also after 6 min restored the cell volume by 99%. Fluoxetine inhibited RVI; 20 μm by 25%, and 50 μm completely. Bumetanide (1 μm) inhibited RVI by 43%. In a Cl-free medium, fluoxetine (50–500 μm) progressively inhibited bumetanide-insensitive K+ influx. The inhibitions of RVI and K+ influx induced by fluoxetine 20 to 50 μm were similar to those induced by 1 μm bumetanide and by Cl-free medium. A computer simulation suggests that fluoxetine can interact with the selectivity filter of K+ channels. The data suggest that CBCEC can mediate RVD and RVI in part through increases in K+ efflux and Na-K-2Cl cotransport (NKCC) activity. Interestingly, the data also suggest that fluoxetine at 20 to 50 μm inhibits NKCC, and at 100–1000 μm inhibits the Na+ pump. One possible explanation for these findings is that fluoxetine could interact with K+-selective sites in K+ channels, the NKC cotransporter and the Na+ pump.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号