首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1985篇
  免费   152篇
  国内免费   58篇
  2023年   42篇
  2022年   53篇
  2021年   84篇
  2020年   84篇
  2019年   100篇
  2018年   77篇
  2017年   60篇
  2016年   74篇
  2015年   81篇
  2014年   126篇
  2013年   147篇
  2012年   113篇
  2011年   114篇
  2010年   85篇
  2009年   95篇
  2008年   90篇
  2007年   95篇
  2006年   91篇
  2005年   50篇
  2004年   65篇
  2003年   50篇
  2002年   57篇
  2001年   45篇
  2000年   36篇
  1999年   32篇
  1998年   34篇
  1997年   9篇
  1996年   17篇
  1995年   17篇
  1994年   14篇
  1993年   8篇
  1992年   12篇
  1991年   14篇
  1990年   10篇
  1989年   4篇
  1988年   6篇
  1987年   8篇
  1986年   7篇
  1985年   9篇
  1984年   16篇
  1983年   4篇
  1982年   12篇
  1981年   10篇
  1980年   12篇
  1979年   4篇
  1978年   5篇
  1977年   5篇
  1976年   8篇
  1975年   2篇
  1972年   1篇
排序方式: 共有2195条查询结果,搜索用时 62 毫秒
71.
72.
73.
The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A''s activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state.  相似文献   
74.
Transposable elements are present in almost all genomes including that of humans. These mobile DNA sequences are capable of invading genomes and their impact on genome evolution is substantial as they contribute to the genetic diversity of organisms. The mobility of transposable elements can cause deleterious mutations, gene disruption and chromosome rearrangements that may lead to several pathologies including cancer. This mini-review aims to give a brief overview of the relationship that transposons and retrotransposons may have in the genetic cause of human cancer onset, or conversely creating protection against cancer. Finally, the cause of TE mobility may also be the cancer cell environment itself.  相似文献   
75.
Herein, we describe a case of an infertile man detected in postnatal diagnosis with FISH characterization and array-CGH used for genome-wide screening which allowed the identification of a complex rearrangement involving sex chromosomes, apparently without severe phenotypic consequences. The deletion detected in our patient has been compared with previously reported cases leading us to propose a hypothetical diagnostic algorithm that would be useful in similar clinical situations, with imperative multi disciplinary approach integrated with genetic counseling. Our patient, uniquely of reproductive age, is one of six reported cases of duplication of Xp22.3 (~ 8.4 Mb) segment and contemporary deletion of Yq (~ 42.9 Mb) with final karyotype as follows:
46,X,der(Y),t(X;Y)(Ypter → Yq11.221::Xp22.33 → Xpter).ish der(Y) (Yptel+,Ycen+,RP11-529I21+,RP11-506M9-Yqtel −,Xptel +). arrXp22.33p22.31(702–8,395,963, 8,408,289x1), Yq11.221q12 (14,569,317x1, 14,587,321–57,440,839x0)  相似文献   
76.
The T241M polymorphism in the X-ray cross-complementing group 3 (XRCC3) had been implicated in cancer susceptibility. The previous published data on the association between XRCC3 T241M polymorphism and cancer risk remained controversial. Hence, we performed a meta-analysis to investigate the association between cancer susceptibility and XRCC3 T241M (61,861 cases and 84,584 controls from 157 studies) polymorphism in different inheritance models. We used odds ratios with 95% confidence intervals to assess the strength of the association. Overall, significantly increased cancer risk was observed in any genetic model (dominant model: odds ration [OR] = 1.07, 95% confidence interval [CI] = 1.00–1.13; recessive model: OR = 1.15, 95% CI = 1.08–1.23; additive model: OR = 1.17, 95% CI = 1.08–1.28) when all eligible studies were pooled into the meta-analysis. In further stratified and sensitivity analyses, the elevated risk remained for subgroups of bladder cancer and breast cancer, especially in Caucasians. In addition, significantly decreased lung cancer risk was also observed. In summary, this meta-analysis suggests the participation of XRCC3 T241M in the susceptibility for bladder cancer and breast cancer, especially in Caucasians, and XRCC3 T241M polymorphism is associated with decreased lung cancer risk. Moreover, our work also points out the importance of new studies for T241M association in some cancer types, such as gastric cancer, colorectal cancer, and melanoma skin cancer, where at least some of the covariates responsible for heterogeneity could be controlled, to obtain a more conclusive understanding about the function of the XRCC3 polymorphism in cancer development.  相似文献   
77.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   
78.
DNA repair events have functional significance especially for genome stability. Although the DNA damage response within the whole genome has been extensively studied, the region-specific characteristics of nuclear sub-compartments such as the nucleolus or fragile sites have not been fully elucidated. Here, we show that the heterochromatin protein HP1 and PML protein recognize spontaneously occurring 53BP1- or γ-H2AX-positive DNA lesions throughout the genome. Moreover, 53BP1 nuclear bodies, which co-localize with PML bodies, also occur within the nucleoli compartments. Irradiation of the human osteosarcoma cell line U2OS with γ-rays increases the degree of co-localization between 53BP1 and PML bodies throughout the genome; however, the 53BP1 protein is less abundant in chromatin of ribosomal genes and fragile sites (FRA3B and FRA16D) in γ-irradiated cells. Most epigenomic marks on ribosomal genes and fragile sites are relatively stable in both non-irradiated and γ-irradiated cells. However, H3K4me2, H3K9me3, H3K27me3 and H3K79me1 were significantly changed in promoter and coding regions of ribosomal genes after exposure of cells to γ-rays. In fragile sites, γ-irradiation induces a decrease in H3K4me3, changes the levels of HP1β, and modifies the levels of H3K9 acetylation, while the level of H3K9me3 was relatively stable. In these studies, we confirm a specific DNA-damage response that differs between the ribosomal genes and fragile sites, which indicates the region-specificity of DNA repair.  相似文献   
79.
80.
In Egypt, β-thalassemia is the most common hereditary hemolytic anemia. Cardiac dysfunction, secondary to iron overload with formation of oxygen free radicals, is the most common cause of death in β-thalassemia patients. This study was designed to determine whether the allelic genotype of apolipoprotein E (Apo E), which exhibits antioxidant properties, could represent a genetic risk factor for the development of left ventricular (LV) dysfunction in β-thalassemia major. Fifty Egyptian β-thalassemia major patients were subjected to echocardiography to assess LV function. Apo E genotyping by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) was done for all patients in addition to 50 age and sex matched healthy control subjects. Patients were classified into three groups. Group I and II were clinically asymptomatic. Group II subjects had evidence of LV dilatation, while Group III patients had clinical and echocardiographic findings of LV failure. Apo E4 allele was significantly higher among Group II and III than in controls. In conclusion, Apo E4 allele can be considered as a genetic risk factor for LV dysfunctions in β-thalassemic patients. It could be used as predictive indicator for additional risk of LV failure, particularly in asymptomatic patients with LV dilatation, requiring a closer follow-up, to prevent further disease progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号