首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   6篇
  国内免费   3篇
  90篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   4篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   10篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1995年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
41.
Without a scale-down model for perfusion, high resource demand makes cell line screening or process development challenging, therefore, potentially successful cell lines or perfusion processes are unrealized and their ability untapped. We present here the refunctioning of a high-capacity microscale system that is typically used in fed-batch process development to allow perfusion operation utilizing in situ gravity settling and automated sampling. In this low resource setting, which involved routine perturbations in mixing, pH and dissolved oxygen concentrations, the specific productivity and the maximum cell concentration were higher than 3.0 × 106 mg/cell/day and 7 × 10 7 cells/ml, respectively, across replicate microscale perfusion runs conducted at one vessel volume exchange per day. A comparative analysis was conducted at bench scale with vessels operated in perfusion mode utilizing a cell retention device. Neither specific productivity nor product quality indicated by product aggregation (6%) was significantly different across scales 19 days after inoculation, thus demonstrating this setup to be a suitable and reliable platform for evaluating the performance of cell lines and the effect of process parameters, relevant to perfusion mode of culturing.  相似文献   
42.
Nature has developed an outstanding bio- and molecular diversity as a result of billion years of evolution resulting in a tremendous number of secondary metabolites. Among them a small part has been so far explored for discovery of lead compounds. The lead discovery from natural sources is a technological challenge for the pharmaceutical industry. The bio- and molecular diversity in plants, animals and microorganisms, as sources for new leads, and the remarkable recent developments in NMR, mass spectrometry coupled with advanced separation techniques (LC and GC), high throughput screening, and structure-based virtual screening are discussed in this article.  相似文献   
43.
Drug development is a costly and lengthy process with low success rates. To improve the efficiency of drug development, there has been an increasing need in developing alternative methods able to eliminate toxic compounds early in the drug development pipeline. Drug metabolism plays a key role in determining the efficacy of a drug and its potential side effects. Since drug metabolism occurs mainly in the liver, liver cell‐based alternative engineering platforms have been growing in the last decade. Microphysiological liver cell‐based systems called liver‐on‐a‐chip platforms can better recapitulate the environment for human liver cells in laboratory settings and have the potential to reduce the number of animal models used in drug development by predicting the response of the liver to a drug in vitro. In this review, we discuss the liver microphysiological platforms from the perspective of drug metabolism studies. We highlight the stand‐alone liver‐on‐a‐chip platforms and multi‐organ systems integrating liver‐on‐a‐chip devices used for drug metabolism mimicry in vitro and review the state‐of‐the‐art platforms reported in the last few years. With the development of more robust and reproducible liver cell‐based microphysiological platforms, the drug development field has the potential of reducing the costs and lengths associated with currently existing drug testing methods.  相似文献   
44.
45.
Pure limestones beneath the paleosols on San Salvador Island, Bahamas, contain strong positive magnetic susceptibility anomalies, although the iron content is generally very low. These magnetic phenomena differ from those associated with disconformities, which are marked by accumulation of paramagnetic airborne dust deposits with relatively high iron content. The strength and characters of the magnetic response in these subsurface zones correspond to the presence of magnetite, particularly small single-domain magnetite crystals of microbial origin. These crystals are not present elsewhere in the intergranular rock pores or microvugs. They are preferentially concentrated in capillary microborings, which developed concurrently with formation of calcite cements that have soil-related C and O isotope compositions. These magnetic zones occur several meters below the overlying soil horizons. Very thin and long linear microborings may be attributable to cyanobacterial microborers. The single-domain magnetites in these micrometer-size tunnels plugged by calcite appear to result from later occupation of these tiny holes by magnetotactic bacteria. Inorganic origin of the magnetite seems unlikely. Numerous traces that suggest subsurface microbial activity provide evidence that may be used to develop possible scenarios for subsequent biological studies of the precise bacteria involved.  相似文献   
46.
The intrinsic editing capacities of aminoacyl-tRNA synthetases ensure a high-fidelity translation of the amino acids that possess effective non-cognate aminoacylation surrogates. The dominant error-correction pathway comprises deacylation of misaminoacylated tRNA within the aminoacyl-tRNA synthetase editing site. To assess the origin of specificity of Escherichia coli leucyl-tRNA synthetase (LeuRS) against the cognate aminoacylation product in editing, we followed binding and catalysis independently using cognate leucyl- and non-cognate norvalyl-tRNALeu and their non-hydrolyzable analogues. We found that the amino acid part (leucine versus norvaline) of (mis)aminoacyl-tRNAs can contribute approximately 10-fold to ground-state discrimination at the editing site. In sharp contrast, the rate of deacylation of leucyl- and norvalyl-tRNALeu differed by about 104-fold. We further established the critical role for the A76 3′-OH group of the tRNALeu in post-transfer editing, which supports the substrate-assisted deacylation mechanism. Interestingly, the abrogation of the LeuRS specificity determinant threonine 252 did not improve the affinity of the editing site for the cognate leucine as expected, but instead substantially enhanced the rate of leucyl-tRNALeu hydrolysis. In line with that, molecular dynamics simulations revealed that the wild-type enzyme, but not the T252A mutant, enforced leucine to adopt the side-chain conformation that promotes the steric exclusion of a putative catalytic water. Our data demonstrated that the LeuRS editing site exhibits amino acid specificity of kinetic origin, arguing against the anticipated prominent role of steric exclusion in the rejection of leucine. This feature distinguishes editing from the synthetic site, which relies on ground-state discrimination in amino acid selection.  相似文献   
47.
Liquid biopsies serve as both powerful noninvasive diagnostic tools for early cancer screening and prognostic tools for monitoring cancer progression and treatment efficacy. Exosomes are promising biomarkers for liquid biopsies, since these nano‐sized extracellular vesicles (EVs) enrich proteins, lipids, mRNAs, and miRNAs from cells of origin, including cancer cells. Although exosomes are abundantly present in various bodily fluids, conventional exosome isolation and detection methods that rely on benchtop equipment are time‐consuming, expensive, and involve complicated non‐portable procedures. As an alternative, recently developed microfluidic platforms can perform effective exosome separation and detection for liquid biopsies using a single device. Such methods offer advantages of integrity, speed, cost‐efficiency, and portability over conventional benchtop and early microfluidic‐based single‐functional methods which can only separate or detect exosomes separately. These advances have made exosome‐based point‐of‐care (POC) applications possible. This review outlines recent integrated microfluidic‐based exosomal detection strategies to guide future development of such devices for use in liquid biopsies for early cancer screening, prognostic monitoring, and other potential POC applications.  相似文献   
48.
ABSTRACT.   Millions of birds migrate across the Gulf of Mexico each year. However, most studies of migration in this region involve sampling onshore locations during the day, potentially underrepresenting the diversity and abundance of migrants passing the region. We evaluated a potential solution to this problem by recording the flight calls of passing migrants from an oil platform located southeast of the Alabama coast in the Gulf of Mexico. We detected 2762 calls during 30 nights from 9 September to 2 November 1999, and were able to identify 2329 calls to species. Flight calls by nine species of birds represented 23% of all identified calls. The greatest number of calls during one night (1017 calls) and during a 1-h period (257 calls) were recorded on 10 September. The greatest number of calls was recorded 8 h after sunset, with a secondary peak 2 h after sunset. The peak prior to sunrise may indicate the formation of flocks at dawn, and the peak after sunset may have been caused by the first wave of migrants reaching the platform. However, call counts varied extensively, with 98% of all calls recorded during 13 nights and 40% on a single night, possibly resulting from hourly and nightly differences in bird numbers aloft, atmospheric conditions, and artificial lighting conditions. Although recording on oil platforms can be difficult because of mechanical, wind, and wave noise, our results suggest great potential for describing the species composition of passing vocal migrants and the temporal patterns of flight-calling behavior if quiet recording locations can be found. Moreover, flight call monitoring could be a critically important tool for bird conservation in this region, given recent proposals to develop wind power and the potential bird mortality associated with such developments.  相似文献   
49.
Continuous reports of foodborne illnesses worldwide and the prevalence of antibiotic-resistant bacteria mandate novel interventions to assure the safety of our food. Treatment of a variety of foods with bacteriophage-derived lysins and bacteriocin-class antimicrobial proteins has been shown to protect against high-risk pathogens at multiple intervention points along the food supply chain. The most significant barrier to the adoption of antimicrobial proteins as a food safety intervention by the food industry is the high production cost using current fermentation-based approaches. Recently, plants have been shown to produce antimicrobial proteins with accumulation as high as 3 g/kg fresh weight and with demonstrated activity against major foodborne pathogens. To investigate potential economic advantages and scalability of this novel platform, we evaluated a highly efficient transgenic plant-based production process. A detailed process simulation model was developed to help identify economic “hot spots” for research and development focus including process operating parameters, unit operations, consumables, and/or raw materials that have the most significant impact on production costs. Our analyses indicate that the unit production cost of antimicrobial proteins in plants at commercial scale for three scenarios is $3.00–6.88/g, which can support a competitive selling price to traditional food safety treatments.  相似文献   
50.
The proteomes of mammalian cells, tissues and biologic fluids are complex and consist of proteins present over a wide dynamic range. Current protein profiling technologies do not have the capacity to overcome the sample complexity for comprehensive analysis of complex proteomes. A common strategy to substantially expand protein profiling capacities is sample prefractionation. A prefractionation method developed in the authors’ laboratory, microscale solution isoelectrofocusing, has resulted in a commercial product, the ZOOM® IEF Fractionator, which provides a simple and convenient method for high-resolution separation of complex proteomes based upon their isoelectric points. Complex human samples such as cancer cells and biologic fluids can be fractionated into well-resolved fractions with minimal cross-contamination of proteins between adjacent fractions. This review focuses on the application of microscale solution isoelectrofocusing prefractionation and subsequent downstream strategies in expanding protein profiling capacities and mining low-abundance proteins of complex proteomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号