首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   8篇
  国内免费   18篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2015年   4篇
  2014年   13篇
  2013年   10篇
  2012年   8篇
  2011年   6篇
  2010年   7篇
  2009年   6篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   8篇
  2003年   11篇
  2002年   14篇
  2001年   10篇
  2000年   9篇
  1999年   16篇
  1998年   7篇
  1997年   11篇
  1996年   10篇
  1995年   11篇
  1994年   5篇
  1993年   7篇
  1992年   9篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有251条查询结果,搜索用时 31 毫秒
31.
We previously demonstrated that overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus early embryos induces execution of maternal program of apoptosis shortly after midblastula transition, which likely serves as a fail-safe mechanism of early development to eliminate physiologically damaged cells before they entering the gastrula stage. To determine how caspases are involved in this process, we microinjected peptide inhibitors and "dominant-negative forms" of caspase-9 and -1 into Xenopus fertilized eggs, and found that inhibitors of caspase-9, but not caspase-1, completely suppress SAMDC-induced apoptosis. The lysate of SAMDC-overexpressing late blastulae contained activity to cleave in vitro-synthesized [(35)S]procaspase-9, but not [(35)S]procaspase-1, and mRNA for caspase-9, but not caspase-1, occurred abundantly in the unfertilized egg as maternal mRNA. We also found that overexpression of caspase-9 and -1 equally executes the apoptosis, but the apoptosis executed by these mRNAs was only partially rescued by Bcl-2 and rescued embryos did not develop beyond neurula stage. These results indicate that activation of caspase-9 is a key step for execution of the maternally preset program of apoptosis in Xenopus early embryos.  相似文献   
32.
The genetically tractable model organism C. elegans has provided insights into a myriad of biological questions, enabled by its short generation time, ease of growth and small size. This small size, though, has disallowed a number of technical approaches found in other model systems. For example, blood transfusions in mammalian systems and grafting techniques in plants enable asking questions of circulatory system composition and signaling. The circulatory system of the worm, the pseudocoelom, has until recently been impossible to assay directly. To answer questions of intercellular signaling and circulatory system composition C. elegans researchers have traditionally turned to genetic analysis, cell/tissue specific rescue, and mosaic analysis. These techniques provide a means to infer what is happening between cells, but are not universally applicable in identification and characterization of extracellular molecules. Here we present a newly developed technique to directly assay the pseudocoelomic fluid of C. elegans. The technique begins with either genetic or physical manipulation to increase the volume of extracellular fluid. Afterward the animals are subjected to a vampiric reverse microinjection technique using a microinjection rig that allows fine balance pressure control. After isolation of extracellular fluid, the collected fluid can be assayed by transfer into other animals or by molecular means. To demonstrate the effectiveness of this technique we present a detailed approach to assay a specific example of extracellular signaling molecules, long dsRNA during a systemic RNAi response. Although characterization of systemic RNAi is a proof of principle example, we see this technique as being adaptable to answer a variety of questions of circulatory system composition and signaling.  相似文献   
33.
The eukaryotic cell relies on complex, highly regulated, and functionally distinct membrane bound compartments that preserve a biochemical polarity necessary for proper cellular function. Understanding how the enzymes, proteins, and cytoskeletal components govern and maintain this biochemical segregation is therefore of paramount importance. The use of fluorescently tagged molecules to localize to and/or perturb subcellular compartments has yielded a wealth of knowledge and advanced our understanding of cellular regulation. Imaging techniques such as fluorescent and confocal microscopy make ascertaining the position of a fluorescently tagged small molecule relatively straightforward, however the resolution of very small structures is limited. On the other hand, electron microscopy has revealed details of subcellular morphology at very high resolution, but its static nature makes it difficult to measure highly dynamic processes with precision. Thus, the combination of light microscopy with electron microscopy of the same sample, termed Correlative Light and Electron Microscopy (CLEM), affords the dual advantages of ultrafast fluorescent imaging with the high-resolution of electron microscopy. This powerful technique has been implemented to study many aspects of cell biology. Since its inception, this procedure has increased our ability to distinguish subcellular architectures and morphologies at high resolution. Here, we present a streamlined method for performing rapid microinjection followed by CLEM (Fig. 1). The microinjection CLEM procedure can be used to introduce specific quantities of small molecules and/or proteins directly into the eukaryotic cell cytoplasm and study the effects from millimeter to multi-nanometer resolution (Fig. 2). The technique is based on microinjecting cells grown on laser etched glass gridded coverslips affixed to the bottom of live cell dishes and imaging with both confocal fluorescent and electron microscopy. Localization of the cell(s) of interest is facilitated by the grid pattern, which is easily transferred, along with the cells of interest, to the Epon resin used for immobilization of samples and sectioning prior to electron microscopy analysis (Fig. 3). Overlay of fluorescent and EM images allows the user to determine the subcellular localization as well as any morphological and/or ultrastructural changes induced by the microinjected molecule of interest (Fig. 4). This technique is amenable to time points ranging from ≤5 s up to several hours, depending on the nature of the microinjected sample.  相似文献   
34.
一种快速检测启动子特异性的方法   总被引:1,自引:0,他引:1  
非洲爪蟾的受精卵体积大,易于操作,与转基因鼠比较,转基因爪蟾操作更是快速、经济、简便,是一种深受欢迎的脊椎动物模型。利用绿色荧光蛋白(GFP)的特性,与不同的基因启动子连接,并运用显微注射技术制备转基因蟾,根据GFP表达情况,可以初步判断启动子的特异性。  相似文献   
35.
36.
We studied the effects of different types of microinjections, such as the mechanical damage to cytoplasmic and nuclear membranes of the zygote and the injection of various gene-engineering constructs or buffer solutions into the cytoplasm or the pronucleus, on the preimplantation of murine embryos (CBA × C57BL)F1. The survival rate of the embryos was estimated by their capacity to develop in vitro to the blastocyst or hatched blastocyst stages. Puncture of the cytoplasm using a microneedle and injection of buff or foreign DNA did not affect the zygotes capacity for further in vitro development. But, the puncture of the pronucleus and microinjection of gene-engineering constructs or buffer into it reliably decreased the survival rate of embryos, as compared to the control. The differences were found in the capacity of murine zygotes for in vitro development after injection with gene-engineering constructs.  相似文献   
37.
38.
The bacteriophage P1 Cre/loxP site-specific recombination system is a useful tool for engineering chromosomal changes in animal cells. Transient expression of the Cre recombinase gene directly introduced into fertilized eggs by pronuclear injection has been reported to provide an efficient method of transgene modulation in fertilized eggs. In the present study, we examined the efficacy of this method to remove loxP-flanked DNA sequences in a gene-targeted locus in fertilized eggs. We replaced a part of the T-cell receptor γ (TCR Vγ) locus with homologous sequences containing a loxP-flanked neogene in mouse embryonic stem (ES) cells by gene-targeting technique. The resulting ES cell clones containing the mutant allele (VγLNL) were used to generate chimeric mice by blastocyst injection. Eight male chimeras were bred with superovulated wild-type female mice. One hundred and seventy-six fertilized eggs were collected, and subjected to pronuclear injection of the Cre expression plasmid, pCAGGS-Cre, of a covalently closed circular form. Three out of 11 pups inherited the targeted Vγ locus. The inherited targeted allele of these 3 mice was shown to have undergone Cre-mediated recombination, resulting in a deletion of the loxP-flanked sequences (VγΔ) as shown by Southern blot analysis of DNA from tail biopsies. All 3 founder mutant mice were capable of transmitting the VγΔ locus to their offspring. The other 8 pups carried only wild-type alleles. There were no pups carrying the unrecombined VγLNL locus. Thus, the frequency of Cre-mediated recombination was 100% (3/3) with this method. In contrast, when closed circular pCAGGS-Cre plasmid was introduced into ES cells by electroporation, the recombination frequency of the VγLNL locus was 9.6%. These results indicated that our system based on transient expression of the Cre recombinase gene directly introduced into fertilized eggs by pronuclear injection provides a fast and efficient method for generating mutant mice with desired deletions or translocations in target genes. Mol Reprod Dev 46:109–113, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
39.
The fruit fly Drosophila embryo is one of the most important model organisms in genetics and developmental biology research. To better understand the biomechanical properties involved in Drosophila embryo research, this work presents a mechanical characterization of living Drosophila embryos through the stages of embryogenesis. Measurements of the mechanical forces of Drosophila embryos are implemented using a novel, in situ, and minimally invasive force sensing tool with a resolution in the range of microN. The measurements offer an essential understanding of penetration force profiles during the microinjection of Drosophila embryos. Sequentially quantitative evaluation and analysis of the mechanical properties, such as Young's modulus, stiffness, and mechanical impedance of living Drosophila embryos are performed by extracting the force measurements throughout the stages of embryogenesis. Experimental results illustrate the changing mechanical properties of Drosophila embryos during development, and thus mathematical models are proposed. The evaluation provides a critical step toward better understanding of the biomechanical properties of Drosophila embryos during embryogenesis, and could contribute to more efficient and significant genetic and embryonic development research on Drosophila.  相似文献   
40.
In this video article we describe a zebrafish model of AKI using gentamicin as the nephrotoxicant. The technique consists of intravenous microinjections on 2 dpf zebrafish. This technique represents an efficient and rapid method to deliver soluble substances into the bloodstream of zebrafish larvae, allowing for the injection of 15-20 fish per hour. In addition to AKI studies, this microinjection technique can also be used for other types of experimental studies such as angiography. We provide a detailed protocol of the technique from equipment required to visual measures of decreased kidney function. In addition, we also demonstrate the process of fixation, whole mount immunohistochemistry with a kidney tubule marker, plastic embedding and sectioning of the larval zebrafish. We demonstrate that zebrafish larvae injected with gentamicin show morphological features consistent with AKI: edema, loss of cell polarity in proximal tubular epithelial cells, and morphological disruption of the tubule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号