首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   43篇
  国内免费   33篇
  2023年   11篇
  2022年   7篇
  2021年   13篇
  2020年   13篇
  2019年   27篇
  2018年   18篇
  2017年   13篇
  2016年   11篇
  2015年   5篇
  2014年   19篇
  2013年   11篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   10篇
  2008年   7篇
  2007年   8篇
  2006年   12篇
  2005年   15篇
  2004年   7篇
  2003年   10篇
  2002年   9篇
  2001年   9篇
  2000年   10篇
  1999年   10篇
  1998年   5篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有322条查询结果,搜索用时 15 毫秒
91.
Shoot architecture has been investigated using the ratio of mean shoot silhouette area to total needle area ( ) as a structural index of needle clumping in shoot space, and as the effective extinction coefficient of needle area. Although can be used effectively for the prediction of canopy gap fraction, it does not provide information about the within‐shoot radiative regime. For this purpose, the estimation of three architectural properties of the shoots is required: needle area density, angular distribution and spatial aggregation. To estimate these features, we developed a method based on the inversion of a Markov three‐dimensional interception model. This approach is based on the turbid medium approximation for needle area in the shoot volume, and assumes an ellipsoidal angular distribution of the normals to the needle area. Observed shoot dimensions and silhouette areas for different vertical and azimuth angles (AS) are used as model inputs. The shape coefficient of the ellipsoidal distribution (c) and the Markov clumping index (λ0) are estimated by a least square procedure, in order to minimize the differences between model prediction and measurements of AS. This methodology was applied to silver fir (Abies alba Mill.) shoots collected in a mixed fir–beech–spruce forest in the Italian Alps. The model worked effectively over the entire range of shoot morphologies: c ranged from 1 to 8 and λ0 from 0·3 to 1 moving from the top to the base of the canopy. Finally, the shoot model was applied to reconstruct the within‐shoot light regime, and the potential of this technique in upscaling photosynthesis to the canopy level is discussed.  相似文献   
92.
Habitat use and microclimatic constraints on the activity of the endemic Madeiran speckled wood butterfly and European speckled wood were studied in September 1989 and April 1990. The endemic species is the most closely associated with laurel forest and the recently established European speckled wood with pine and eucalyptus forest. The relative abundances of the two species in different sites changes with season, with the endemic species being relatively more common in low level sites in April at the end of the cool season, than in September at the end of the warm summer period. It is suggested that changes of abundance in different locations are related to the thermal biology of the two species. The endemic speckled wood is active at lower air temperature than the European species, and the cool winter period may facilitate occupation of open sunny sites. The activity of the endemic speckled wood is less constrained by cool and dull conditions than is that of the European species, which requires higher temperatures for activity. It is proposed that the activity and behavioural repertoire of the endemic is most suited to climatic conditions in, and structural features of, laurel forest. The European species is most suited for activity in open woodland and agricultural habitats. Interactions between adults of the two species do not indicate direct competition. Changes in the distribution of the two species can be linked to probable changes of habitat on the island of Madeira.  相似文献   
93.

Aim

The soil seed bank is a key component of the biodiversity of plant communities, but various aspects of its functioning in temperate forest ecosystems are still unknown. We here adopted a trait-based approach to investigate the effects of macro- and microclimatic gradients on the juvenile plant communities from the realized seed bank of two types of European temperate forest.

Location

Oak-dominated forests in Italy and Belgium.

Methods

We analysed the variation of key functional traits (plant height, leaf area, leaf dry weight, specific leaf area and leaf number) of juvenile plants from the realised soil seed bank in relation to elevation (from 0 to 800 m a.s.l.), forest type (thinned and unthinned forest) and distance to the forest edge. We translocated soil samples from the forest core to the edge (and vice versa) and from high- to low-elevation forests to test the effects of edge and warming respectively.

Results

Taller communities developed at the forest edge due to higher light availability and warmer temperatures. The translocation from the core to the edge did not significantly modify mean trait values. Instead, the shadier and cooler microclimate of the forest core reduced the mean leaf area, mean dry weight, height and leaf number in the communities realised from the edge soil. The translocation from high- to lowland forests led to increased values for all traits (except specific leaf area). Edge vs core trait variation was more driven by intraspecific variability, whereas the translocation from high- to low-elevation forests caused trait changes mostly due to species turnover.

Conclusions

Global warming might result in a functional shift of the understorey due to both an early filtering effect on the seedlings from soil seed banks and their adaptive trait adjustments to temperature increase. Furthermore, our study underpins the importance of edge vs core microclimate in driving the functional composition of the realised soil seed bank.  相似文献   
94.
Experiments were performed on isolated, stripped colonic epithelia of low-salt-adapted hens (Gallus domesticus) in order to characterize acid secretion by this tissue. With symmetric, weak buffer solutions, colonic epithelia acidified both mucosal and serosal sides. Titration measurements of the mucosal acidification rate (pH-stat technique) averaged 1.63±0.25 Eq·cm-2·h-1. Mucosal acidification was also evident in colons from high-salt-adapted birds and in low-salt-adapted coprodeum, but was completely abolished in the high-salt coprodeum. Mucosal acidification by low-salt-adapted colonic epithelium was unaffected by sodium replacement, mucosal amiloride (10-3 mol·l-1), and serosal ouabain (5x10-4 mol·l-1), although all three treatments significantly reduced or reversed the short-circuit current. Acetazolamide (10-3 mol·l-1, serosal) reduced mucosal acidification by 15% and simultaneously increased short-circuit current by a similar amount. Colonic epithelia incubated in glucose-free solutions had significantly lower acidification rates (0.59±0.13 Eq·cm-2·h-1, P<0.002 versus controls) and addition of glucose (15 mmol·l-1), but not galactose, partially restored acidification to control levels. Anoxia (N2 gassing) completely inhibited short-circuit current, but reduced acidification by only 30%. A surface microclimate pH, nearly 2 pH units more acidic than the bath pH of 7.1–7.4 was measured in low-salt-adapted colon and coprodeum. The acid microclimate of both tissues was partially attenuated by adaptation to a high-salt diet. Colonic microclimate pH was dependent on the presence of glucose and sensitive to the bath pH. Histochemical staining for carbonic anhydrase localized this enzyme to cytoplasm and lateral margins of one subfraction of colonic cells, and to cytoplasm in a second subpopulation Intense staining was also evident in subepithelial capillaries. These results suggest that a large part of mucosal acidification and maintenance of the acid microclimate in hen colon may be dependent on glycolysis and metabolic acid production, although a smaller, electrogenic and acetazolamidesensitive component also appears to exist. This latter component may become more prominent under conditions of cellular acidification.Abbreviations CA carbonic anhydrase - I SC short circuit current - NFM N-ethylmaleimide - PD transepithelial potential - SCFA short chain fatty acids  相似文献   
95.
The importance of terrestrial coastal ecosystems for maintaining healthy coral reef ecosystems remains understudied. Sea kraits are amphibious snakes that require healthy coral reefs for foraging, but little is known about their requirements of terrestrial habitats, where they slough their skin, digest prey, and breed. Using concurrent microclimate measurements and behavior surveys, we show that a small, topographically flat atoll in Fiji with coastal forest provides many microhabitats that relate to the behaviors of Yellow Lipped Sea Kraits, Laticauda colubrina. Microclimates were significantly related to canopy cover, leaf litter depth, and distance from the high‐water mark (HWM). Sea kraits were almost exclusively observed in coastal forest within 30 m of the HWM. Sloughing of skins only occurred within crevices of mature or dying trees. Resting L. colubrina were significantly more likely to occur at locations with higher mean diurnal temperatures, lower leaf litter depths, and shorter distances from the HWM. On Leleuvia, behavior of L. colubrina therefore relates to environmental heterogeneity created by old‐growth coastal forests, particularly canopy cover and crevices in mature and dead tree trunks. The importance of healthy coastal habitats, both terrestrial and marine, for L. colubrina suggests it could be a good flagship species for advocating integrated land‐sea management. Furthermore, our study highlights the importance of coastal forests and topographically flat atolls for biodiversity conservation. Effective conservation management of amphibious species that utilize land‐ and seascapes is therefore likely to require a holistic approach that incorporates connectivity among ecosystems and environmental heterogeneity at all relevant scales.  相似文献   
96.
97.
High‐altitude treelines are temperature‐limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest‐tundra ecotones have changed during the last century along the Ural mountains. In the South, North, Sub‐Polar, and Polar Urals, we compared 450 historical and recent photographs and determined the ages of 11 100 trees along 16 altitudinal gradients. In these four regions, boundaries of open and closed forests (crown covers above 20% and 40%) expanded upwards by 4 to 8 m in altitude per decade. Results strongly suggest that snow was an important driver for these forest advances: (i) Winter precipitation has increased substantially throughout the Urals (~7 mm decade?1), which corresponds to almost a doubling in the Polar Urals, while summer temperatures have only changed slightly (~0.05 °C decade?1). (ii) There was a positive correlation between canopy cover, snow height and soil temperatures, suggesting that an increasing canopy cover promotes snow accumulation and, hence, a more favorable microclimate. (iii) Tree age analysis showed that forest expansion mainly began around the year 1900 on concave wind‐sheltered slopes with thick snow covers, while it started in the 1950s and 1970s on slopes with shallower snow covers. (iv) During the 20th century, dominant growth forms of trees have changed from multistemmed trees, resulting from harsh winter conditions, to single‐stemmed trees. While 87%, 31%, and 93% of stems appearing before 1950 were from multistemmed trees in the South, North and Polar Urals, more than 95% of the younger trees had a single stem. Currently, there is a high density of seedlings and saplings in the forest‐tundra ecotone, indicating that forest expansion is ongoing and that alpine tundra vegetation will disappear from most mountains of the South and North Urals where treeline is already close to the highest peaks.  相似文献   
98.
99.
Ecologists are increasingly recognizing the conservation significance of microrefugia, but it is inherently difficult to locate these small patches with unusual climates, and hence they are also referred to as cryptic refugia. Here we introduce a new methodology to quantify and locate potential microrefugia using fine‐scale topoclimatic grids that capture extreme conditions, stable climates, and distinct differences from the surrounding matrix. We collected hourly temperature data from 150 sites in a large (200 km by 300 km) and diverse region of New South Wales, Australia, for a total of 671 days over 2 years. Sites spanned a range of habitats including coastal dune shrublands, eucalypt forests, exposed woodland ridges, sheltered rainforest gullies, upland swamps, and lowland pastures. Climate grids were interpolated using a regional regression approach based on elevation, distance to coast, canopy cover, latitude, cold‐air drainage, and topographical exposure to winds and radiation. We identified extreme temperatures on two separate climatic gradients: the 5th percentile of minimum temperatures and the 95th percentile of maximum temperatures. For each gradient, climatic stability was assessed on three different time scales (intra‐seasonal, intra‐annual and inter‐annual). Differences from the matrix were assessed using a moving window with a 5 km radius. We averaged the Z‐scores for these extreme, stable and isolated climates to identify potential locations of microrefugia. We found that our method successfully predicted the location of communities that were considered to occupy refugia, such as rainforests that have progressively contracted in distribution over the last 2.5 million years, and alpine grasslands that have contracted over the last 15 thousand years. However, the method was inherently sensitive to the gradient selected and other aspects of the modelling process. These uncertainties could be dealt with in a conservation planning context by repeating the methodology with various parameterizations and identifying areas that were consistently identified as microrefugia.  相似文献   
100.
A field experiment was conducted to investigate the causes of poor canola growth through surface-retained wheat stubble. The experiment was designed to separate the role of biochemical factors such as stubble phytotoxicity, nitrogen (N) immobilisation and disease incidence from the physical effects of the stubble including changes in the seedbed microclimate on crop growth and yield, as these had been previously identified as possible mechanisms for the poor growth. Treatments included: two stubble cultivars, three levels of decomposition, two levels of nitrogen and inert plastic mulch. A novel approach involving leachates collected from intact field cores with a rainfall simulator was also used to assess the phytotoxic impacts of the stubble. Surface-retained wheat stubble (5 t/ha) reduced the canola vegetative biomass by 46% and yield by 26%, consistent with previous field observations. There was no impact of stubble variety or level of stubble decomposition on canola growth and yield, and an inert plastic mulch designed to simulate the physical effects of the wheat stubble had a similar effect on growth and yield as wheat stubble. Leachates collected from intact field cores through surface stubble also had no impact on canola germination or radicle elongation in petri-dishes in the absence of soil, nor on emergence of canola in pots of soil. Together, these observations suggest phytotoxicity was not contributing to the poor growth. N-immobilisation was evident in stubble-retained treatments although tissue N concentrations were adequate in all treatments and the growth limitation could not be overcome with added N. The principal mechanism of growth reduction was associated with the physical impact of the stubble including a reduction in photosynthetically active radiation, the red:far red ratio of incident light under the stubble, and the temperature above the stubble layer. These effects led to elongated hypocotyls, reduced investment in early leaf and root growth, delayed emergence and slower leaf area development as well as an increase in seedling disease complex, effects apparent in both wheat stubble and inert plastic mulch treatments. The results suggest that physical, rather than biochemical factors are the main cause of poor growth of canola in surface-retained wheat stubble, and that much of the impact could be avoided if the stubble were moved away from directly above the emerging seedlings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号