首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   43篇
  国内免费   33篇
  2023年   11篇
  2022年   6篇
  2021年   13篇
  2020年   13篇
  2019年   27篇
  2018年   18篇
  2017年   13篇
  2016年   11篇
  2015年   5篇
  2014年   19篇
  2013年   11篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   10篇
  2008年   7篇
  2007年   8篇
  2006年   12篇
  2005年   15篇
  2004年   7篇
  2003年   10篇
  2002年   9篇
  2001年   9篇
  2000年   10篇
  1999年   10篇
  1998年   5篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有321条查询结果,搜索用时 31 毫秒
41.
Recent work on bryophyte diversity in lowland forests of northern South America has suggested the existence of a new type of cloud forest, the ‘tropical lowland cloud forest’ (LCF). LCF occurs in river valleys in hilly areas with high air humidity and morning fog, and is rich in epiphytes. We explored epiphyte abundance and canopy microclimate of LCF in a lowland area (200–400 m asl) near Saül, central French Guiana. We analyzed the vertical distribution of epiphytic cover and biomass on 48 trees, in LCF and in lowland rain forest (LRF) without fog. Trees in LCF had significantly more epiphytic biomass than in LRF; mean total epiphytic biomass in LCF was about 59 g/m2, and 35 g/m2 in LRF. In all height zones on the trees, total epiphyte cover in LCF exceeded that in LRF, with ca 70 percent mean cover in LCF and ca 15 percent in LRF. During both wet and dry seasons, mean diurnal relative air humidity (RH) was higher in LCF than in LRF, and persistence of high RH after sunrise significantly longer in LCF. We suggest that the prolonged availability of high air humidity in LCF and the additional input of liquid water through fog, enhance epiphyte growth in LCF by shortening the desiccation period and lengthening the period of photosynthetic activity of the plants.  相似文献   
42.
This paper considers the use of passive greenhouse apparatus in field experiments investigating the biological consequences of climate change. The literature contains many accounts of such experiments claiming relevance of greenhouse treatment effects to global change scenarios. However, inadequacies in microclimate monitoring, together with incomplete understanding of greenhouse modes of action, cast doubt upon such claims. Here, treatment effects upon temperature (magnitude, range, variation, rates of change), moisture (humidity, precipitation, soil water content), light (intensity, spectral distribution), gas composition, snow cover, and wind speed are reviewed in the context of Intergovernmental Panel on Climate Change (IPCC) predictions. It is revealed that greenhouses modify each of these potentially limiting factors in a complex and interactive manner, but that the relationship between this modification and forecast conditions of climate change is poor. Interpretation of biological responses, and their extrapolation to predictive models, is thus unreliable. In order that future greenhouse experiments may overcome criticisms of artefact and lack of rigour, two amendments to methodology are proposed: (1) objective-orientated design of greenhouse apparatus (2) multiple controls addressing individual environmental factors. The importance of a priori testing of microclimate treatment effects is stressed.  相似文献   
43.
Efforts to restore ponderosa pine ecosystems to open, park‐like conditions that predominated prior to European‐American settlement result in altered stand structure and increased landscape heterogeneity, potentially altering habitat suitability for invertebrates and other forest organisms. We examined the responses of two butterfly species, Colias eurytheme and Neophasia menapia, to microclimatic changes at structural edges created by experimental restoration treatments in northern Arizona. We monitored microclimate, including air temperature, light intensity, and vapor pressure deficit (VPD), on several mornings during butterfly releases. We placed adult butterflies at east‐ and west‐facing edges approximately one half‐hour before dawn to determine their behavioral response to microclimatic differences between east‐ and west‐facing edges. After sunrise, all three microclimatic variables were higher at east‐facing edges, and the difference in microclimate between the two edge orientations increased through early morning. For both species, butterflies placed at east‐facing edges flew earlier than butterflies at west‐facing edges. Colias eurytheme, an open‐habitat species, tended to move toward the treated forest during initial flight, while movements of Neophasia menapia, a forest‐dwelling species, did not differ from random flight. Our results indicate that butterflies respond to microclimatic factors associated with restoration treatments, while responses to structural changes in habitat vary among species, based on habitat and food plant preferences. These changes in forest structure and microclimate may affect the distribution of many mobile invertebrates in forested landscapes undergoing restoration treatments.  相似文献   
44.
Human activities often replace native forests with warmer, modified habitats that represent novel thermal environments for biodiversity. Reducing biodiversity loss hinges upon identifying which species are most sensitive to the environmental conditions that result from habitat modification. Drawing on case studies and a meta‐analysis, we examined whether observed and modelled thermal traits, including heat tolerances, variation in body temperatures, and evaporative water loss, explained variation in sensitivity of ectotherms to habitat modification. Low heat tolerances of lizards and amphibians and high evaporative water loss of amphibians were associated with increased sensitivity to habitat modification, often explaining more variation than non‐thermal traits. Heat tolerances alone explained 24–66% (mean = 38%) of the variation in species responses, and these trends were largely consistent across geographic locations and spatial scales. As habitat modification alters local microclimates, the thermal biology of species will likely play a key role in the reassembly of terrestrial communities.  相似文献   
45.
Success of establishing native trees in cool temperate environments depends on the ability of seedlings to withstand subzero temperatures and recurrent frosts. This study compared the survival and growth of five tree and shrub species with two guard types at three landscape positions in an upland pasture. Seedlings were planted between December 2013 and March 2014. Half of the seedlings were planted in tall Corflute® guards (60 cm high), and the remaining seedlings were interplanted in milk cartons (30 cm). Seedling survival and height were measured in November 2014. Hourly temperature readings were recorded between March and November 2014. Seedling height for all species was greater in tall guards than milk cartons at all landscape positions, possibly at least partly due to etiolation. However, seedlings in tall guards survived better than seedlings in milk cartons at mid‐ and upper‐slope positions. Higher temperatures may have benefited seedling performance by prolonging the growing season as average maximum temperature was significantly higher inside tall guards than milk cartons and ambient conditions at all landscape positions. Average daily temperature was significantly higher in tall guards compared to milk cartons and ambient conditions at the upper‐slope site only. There were no significant differences in average minimum temperature between guard types at all landscape positions.  相似文献   
46.
Tropical rainforests are subject to extensive degradation by commercial selective logging. Despite pervasive changes to forest structure, selectively logged forests represent vital refugia for global biodiversity. The ability of these forests to buffer temperature‐sensitive species from climate warming will be an important determinant of their future conservation value, although this topic remains largely unexplored. Thermal buffering potential is broadly determined by: (i) the difference between the “macroclimate” (climate at a local scale, m to ha) and the “microclimate” (climate at a fine‐scale, mm to m, that is distinct from the macroclimate); (ii) thermal stability of microclimates (e.g. variation in daily temperatures); and (iii) the availability of microclimates to organisms. We compared these metrics in undisturbed primary forest and intensively logged forest on Borneo, using thermal images to capture cool microclimates on the surface of the forest floor, and information from dataloggers placed inside deadwood, tree holes and leaf litter. Although major differences in forest structure remained 9–12 years after repeated selective logging, we found that logging activity had very little effect on thermal buffering, in terms of macroclimate and microclimate temperatures, and the overall availability of microclimates. For 1°C warming in the macroclimate, temperature inside deadwood, tree holes and leaf litter warmed slightly more in primary forest than in logged forest, but the effect amounted to <0.1°C difference between forest types. We therefore conclude that selectively logged forests are similar to primary forests in their potential for thermal buffering, and subsequent ability to retain temperature‐sensitive species under climate change. Selectively logged forests can play a crucial role in the long‐term maintenance of global biodiversity.  相似文献   
47.
1. This study examines the extent to which thermal balance and thermoregulatory ability may contribute to habitat partitioning in insect herbivores.
2. The distribution of four species of grasshopper on a Breckland grass heath is described. Myrmeleotettix maculatus is restricted to short swards, Omocestus viridulus is restricted to long swards, and Chorthippus brunneus and Stenobothrus lineatus are found on swards of intermediate length.
3. Short swards are warmer on average than long swards, but lack cooler refuges on hot days.
4. Chorthippus brunneus and O. viridulus are better able to raise their body temperatures at low ambient temperatures than M. maculatus and S. lineatus . Omocestus viridulus is less able to reduce body temperature at high ambient temperature.
5. Myrmeleotettix maculatus may be precluded from inhabiting cooler long swards because of its inability to raise body temperatures at low ambient temperatures. Omocestus viridulus may avoid short swards because of the danger of overheating.
6. Thermoregulatory ability is a good predictor of the distribution of the grasshoppers in swards of differing length and microclimate.  相似文献   
48.
49.
The purpose of this present study was to compare the physiological effects of the hydrophilic and hydrophobic properties of the fabrics investigated in exercising and resting subjects at an ambient temperature of 30°C and a relative humidity of 50% with and without wind. Three kinds of clothing ensemble were tested: wool and cotton blend with high moisture regain (A), 100% cotton with intermediate moisture regain (B), 100% polyester clothing with low moisture regain (C). The experiments were performed using seven young adult women as subjects. They comprised six repeated periods of 10-min exercise on a cycle ergometer at an intensity of 40% maximal oxygen uptake followed by 5 min of rest (20 min for the last rest). The experiments comprised two sessions. During session I (first three repetitions of exercise and rest) the subjects were exposed to an indifferent wind velocity and during session II (last three repetitions of exercise and rest) they were exposed to a wind velocity of 1.5 m · s−1. Rectal temperature and skin temperatures at eight sites, pulse rate and clothing microclimate were recorded throughout the whole period. The main findings can be summarized as follows: rectal temperature during session II was kept at a significantly lower level in A than in B and C. Clothing microclimate humidity at the chest was significantly lower in A than in B and C during session II. Skin and clothing microclimate temperatures at the chest were significantly lower in A than in B and C during session II. Pulse rate was significantly higher in C than in A and B during sessions I and II. It was concluded that the hydrophilic properties of the fabrics studied were of physiological significance for reducing heat strain during exercise and rest especially when influenced by wind. Accepted: 3 June 1998  相似文献   
50.
In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro‐climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long‐running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional‐ and global‐scale terrestrial ecosystem models. Analyses driven by chamber‐based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud‐free (i.e., drought‐like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco‐physiological processes from macroscale climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号