首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   9篇
  国内免费   8篇
  162篇
  2024年   3篇
  2023年   5篇
  2022年   4篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   3篇
  2014年   5篇
  2013年   42篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
71.
A series of 90/10 cupronickel alloys containing iron at levels between 0% and 5% were immersed in the sea in Chichester Harbour. Samples were retrieved over a 14‐month period and subjected to scanning electron microscopy, energy dispersive X‐ray analysis and X‐ray photoelectron spectroscopy. The alloy with no iron corroded very rapidly and showed little, if any, colonisation. The 0·5% Fe and 1·5% Fe alloys developed microfouling communities dominated by the diatom Amphora, while the 2·5% and 5% Fe‐containing materials showed not only diatoms but also macro‐fouling in the form of barnacle settlement. However, the very loosely adherent nature of the iron and nickel‐rich corrosion products of these high iron alloys resulted in very poor tenacity of adhesion by the macrofouling. However, thick films of diatoms of lower copper tolerance became well established on the iron‐rich alloys. The alternative anti‐fouling mechanisms of the 90/10 copper‐nickels are discussed.  相似文献   
72.
Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60 day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products.  相似文献   
73.
Abstract

Microbial degradation of the oil soluble corrosion inhibitor (OSCI) Baker NC 351 contributed to a decrease in inhibitor efficiency. Corrosion inhibition efficiency was studied by the rotating cage and flow loop methods. The nature of the biodegradation of the corrosion inhibitor was also analysed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The influence of bacterial activity on the degradation of the corrosion inhibitor and its influence on corrosion of API 5LX were evaluated using a weight loss technique and impedance studies. Serratia marcescens ACE2 and Bacillus cereus ACE4 can degrade aromatic and aliphatic hydrocarbons present in the corrosion inhibitor. The present study also discusses the demerits of the oil soluble corrosion inhibitors used in petroleum product pipeline.  相似文献   
74.

The influence of sulfate‐reducing bacteria on corrosion of mild steel is reviewed, with special emphasis on the effects of biofilm structure and function, medium composition (dissolved oxygen and ferrous ion concentrations) and the physical and chemical properties of iron sulfides. A summary of different corrosion mechanisms is critically discussed, based on electrochemical and rate process analyses. A mechanism is proposed which explains the high corrosion rates observed in the field.  相似文献   
75.
76.
采用60Coγ射线引发聚合制备了丙烯酸共聚物阻垢缓蚀剂,考察了该阻垢缓蚀剂与国内同类产品在不同环境条件下的阻垢率和缓蚀率,实验表明:该阻垢缓蚀剂具有耐高温,耐碱的优点,阻垢和缓蚀性能优于国内同类产品;经过半年的工业现场应用试验,取得了很好的效果.  相似文献   
77.
Designing a nanocomposite that accumulates biocompatibility and antimicrobial behaviour is an essential requirement for biomedical applications. Hydroxyapatite (HAP), graphene oxide, and vivianite in one ternary nanocomposite with three phases and shapes led to an increase in cell viability to 97.6% ± 4 for the osteoblast cells in vitro. The obtained nanocomposites were investigated for their structural features using X-ray diffraction, while the microstructure features were analyzed using a scanning electron microscope (SEM) and a transmission electron microscope. The analysis showed a decrease in the crystal size to 13 nm, while the HAP grains reached 30 nm. The elongated shape of vivianite reached 200 nm on SEM micrographs. The monoclinic and hexagonal crystal systems of HAP and vivianite were presented in the ternary nanocomposite. The maximum roughness peak height reached 236.1 nm for the ternary nanocomposite from 203.3 nm, while the maximum height of the roughness parameter reached 440.7 nm for the di-nanocomposite of HAP/graphene oxide from 419.7 nm. The corrosion current density reached 0.004 μA/cm2. The ferrous (Fe2+) and calcium (Ca2+) ions released were measured and confirmed. Therefore, the morphology of the nanocomposites affected bacterial activity. This was estimated as an inhibition zone and reached 14.5 ± 0.9 and 13.4 ± 1.1 mm for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 24 h. The increase in viability and the antibacterial activity refer to the compatibility of the nanocomposite in different medical applications.  相似文献   
78.
Aims: This study applied culture‐dependent and molecular approaches to examine the bacterial communities at corrosion sites at Granite Mountain Record Vault (GMRV) in Utah, USA, with the goal of understanding the role of microbes in these unexpected corrosion events. Methods and Results: Samples from corroded steel chunks, rock particles and waters around the corrosion pits were collected for bacterial isolation and molecular analyses. Bacteria cultivated from these sites were identified as members of Alphaproteobacteria, Gammaproteobacteria, Firmicutes and Actinobacteria. In addition, molecular genetic characterization of the communities via nested‐polymerase chain reaction‐denaturing gradient gel electrophoresis (DGGE) indicated the presence of a broad spectrum of bacterial groups, including Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. However, neither cultivation nor molecular approaches identified sulfate‐reducing bacteria (SRB), the bacteria commonly implicated as causative organisms were found associated with corrosive lesions in a process referred to as microbially influenced corrosion (MIC). The high diversity of bacterial groups at the corrosion sites in comparison with that seen in the source waters suggested to us a role for the microbes in corrosion, perhaps being an expression of a redox‐active group of microbes transferring electrons, harvesting energy and producing biomass. Conclusions: The corrosion sites contained highly diverse microbial communities, consistent with the involvement of microbial activities along the redox gradient at corrosion interface. We hypothesize an electron transport model for MIC, involving diverse bacterial groups such as acid‐producing bacteria (APB), SRB, sulfur‐oxidizing bacteria (SOB), metal‐reducing bacteria (MRB) and metal‐oxidizing bacteria (MOB). Significance and Impact of the Study: The characterization of micro‐organisms that influence metal‐concrete corrosion at GMRV has significant implications for corrosion control in high‐altitude freshwater environments. MIC provides a potential opportunity to further our understandings of extracellular electron transfer and interspecies communications.  相似文献   
79.
Shenzhen was a famous typical rapid-urbanization city in China, and this study compares plant species diversity in urban parks from the start of urbanization through 2011. Results show that the plant species biodiversity increased rapidly: the rate changed from 140% to 980% and the average increasing rate was 406.90%, but only 12.59% of plants spread into the park naturally. Shrubs had the highest rate; with change increasing from 20.70% to 43.54%, they replaced trees to become the dominant type. The biodiversity of native plants also increased, but their proportion relative to all species had declined. The homogenization of plant species in the parks increased; more than half of the plant species (62.24%) are located in 5–7 parks at once now, compared with 65.52% of species located in only 2–3 parks at the start of the study. The increase of species was faster than the increase of families; many new species planted belong to a few specific families. The ratio of species to families declined from 0.40 to 0.32. Results indicate that the rapid increase of plant species diversity as well as their homogenization happened in the initial stage of urbanization, and so rapid urbanization might be the major factor in the changes in plant species diversity in municipal parks. Rapid urbanization was an important cause of change in plant species diversity.  相似文献   
80.
Solid deposits of corroded pipelines in the Niger Delta were analyzed both chemically and microbiologically. The addition of substrate, especially acetate, significantly stimulated the methane production ranging from 0.85 to 1.60 mmole compared with 0.65 mmole of the control. Acetotrophic and hydrogenotrophic methanogens had their optimal methane production and corrosion rate at pH 5.5. All three types of methanogens produced the most methane at 37°C. Methane production by methanogens correlated strongly with corrosion rate. Pyrosequencing surveys show dominance of acetotrophic, hydrogenotrophic, and methylotrophic methanogens in the samples with no significant presence of sulfate-reducing bacteria (SRB), most likely due to the presence of the biocide, tetrakis-hydroxymethyl phosphonium sulfate. Our study shows that methanogens were one possible cause of pipeline failures in samples from the Niger Delta without the syntrophic association with SRB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号