首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5084篇
  免费   624篇
  国内免费   1419篇
  2024年   41篇
  2023年   217篇
  2022年   256篇
  2021年   297篇
  2020年   299篇
  2019年   315篇
  2018年   310篇
  2017年   283篇
  2016年   276篇
  2015年   240篇
  2014年   282篇
  2013年   473篇
  2012年   233篇
  2011年   267篇
  2010年   237篇
  2009年   288篇
  2008年   270篇
  2007年   293篇
  2006年   271篇
  2005年   211篇
  2004年   187篇
  2003年   161篇
  2002年   149篇
  2001年   132篇
  2000年   123篇
  1999年   103篇
  1998年   72篇
  1997年   82篇
  1996年   74篇
  1995年   71篇
  1994年   62篇
  1993年   67篇
  1992年   46篇
  1991年   58篇
  1990年   42篇
  1989年   36篇
  1988年   35篇
  1987年   28篇
  1986年   19篇
  1985年   36篇
  1984年   41篇
  1983年   21篇
  1982年   29篇
  1981年   15篇
  1980年   7篇
  1979年   17篇
  1978年   16篇
  1977年   10篇
  1976年   8篇
  1973年   8篇
排序方式: 共有7127条查询结果,搜索用时 25 毫秒
41.
The annual limnological dynamics of two meromictic basins of Lake Banyoles (C-III and C-IV) have been studied and compared on the basis of their physical, chemical and biological characters. Stability values calculated for both basins gave 865 g cm cm−2 and 495 g cm cm−2 for C-III and C-IV respectively. These values are in agreement with the fact that C-IV was almost completely mixed during winter. In this basin, during stratification, the monimolimnion increased in thickness as the stability increased. Isolation of the respective monimolimnia resulted in the development of anoxic conditions and the accumulation of sulphide in both C-III and C-IV, which favoured the development of dense populations of sulfur phototrophic bacteria. The purple sulphur bacterium Chromatium minus and the green sulphur bacterium Chlorobium phaeobacteroides were identified as the main components of these photosynthetic populations. The different depths at which the O2/H2S boundary was situated in both basins (and consequently the different light intensity reaching this zone) determined the growth of these bacteria. Light intensities at the chemocline of C-IV reached values up to 5% of surface incident light. In contrast, in C-III this variable was sensibly lower, with values depending on season and seldom reaching 1%. Phototrophic bacteria were consequently found earlier in C-IV than in C-III, where no significant concentrations were found until August. Finally stability is discussed as an important factor controlling chemical and biological dynamics in meromictic lakes.  相似文献   
42.
Leaf decomposition of the exotic evergreen Eucalyptus globulus (eucalyptus), and three native deciduous tree species, Alnus glutinosa (alder), Castanea sativa (chestnut) and Quercus faginea (oak), was compared in a second order stream in Central Portugal. Changes in dry weight, nitrogen and polyphenolic compounds and microbial colonization were periodically assessed for three months.Negative exponential curves fit the leaf weight loss with time for all leaf species. Mass loss rate was in the order alder (K = 0.0161) > chestnut (K = 0.0079) > eucalyptus (K = 0.0068) > oak (K = 0.0037). Microbial colonization followed the same pattern as breakdown rates. Evidence of fungal colonization was observed in alder after 3 days in the stream, whereas it took 21 days in oak leaves to have fungal colonization. Fungal diversity was leaf species-dependent and increased with time. In all cases, percent nitrogen per unit leaf weight increased, at least, at the initial stages of decay while soluble polyphenolics (expressed as percentage per unit leaf weight) decreased rapidly in the first month of leaves immersion.Intrinsic factors such as nitrogen and polyphenolic content may explain differences in leaf decomposition. The possible incorporation of eucalyptus litter into secondary production in a reasonable time span is suggested, although community balance and structure might be affected by differences in allochthonous patterns determined by eucalyptus monocultures.  相似文献   
43.
Cathepsin B (EC 3.4.22.1) was purified from buffalo liver. The enzyme activity against-benzoyl-dl-arginine-naphthylamme (BANA) was substantially reduced by heat (above 37C) and by nondenaturing concentrations of urea (3 M) and guanidine hydrochloride (1 M). Cathepsin B was significantly activated by 1.5 mM EDTA alone. The activation of the enzyme was further enhanced in the presence of thiol compounds, e.g., cysteine thioglycolic acid, 2,3-dimercapto-1-propenol, and dithioerythritol (DTE). The minimum concentration of the thiol compound required for optimal activation of cathepsin B was found to be lowest (0.2 mM) for DTE. The BANA hydrolyzing activity of cathepsin B was substantially reduced by Cu2+ (20–200M) and Ca2+ (30–250 mM) as well as by thiol blocking reagents, e.g., iodoacetate, 5,5-dithiobis(2-nitro-benzoic acid) (DTNB), andp-hydroxymercuribenzoate (pHMB). The enzyme activity was completely abolished when the molar ratio of the reagent: cathepsin B was close to 1. The number of free sulfhydryl groups in cathepsin B was determined to be 2 by titration against DTNB and pHMB. Modification of one free thiol group of cathepsin B resulted in complete loss of BANA hydrolyzing activity.  相似文献   
44.
A pink-pigmented, facultative methylotrophic (PPFM) bacterium, Methylobacterium mesophilicum, which is found on the leaf surface of most plants, has been reported to be a covert contaminant of tissue cultures initiated from Glycine max (soybean) leaves and seeds by Holland and Polacco (1992). The bacteria can be detected as pink colonies when leaves are pressed or tissue culture homogenates are plated on a medium with methanol as the sole carbon source. Since the presence of contaminating bacteria can confound any biochemical results obtained with such cultures (Holland and Polacco 1992), we wanted to determine the extent of the contamination of our tissue cultures of soybean and other species. No PPFMs were detected in any soybean culture we have, and previous results describing the biochemical characteristics of ureide utilization by one of our soybean suspension cultures (27C) also indicates that PPFM bacteria were not present. Analysis of about 200 other strains of 11 different species maintained in this lab showed that only three of about 160 callus cultures, recently initiated from Datura innoxia leaves, contained PPFMs. The D. innoxia leaves did have PPFMs on their surface but in most cases they did not survive the surface disinfestation and culture regimes. Thus PPFM bacterial contamination should not be a serious problem in most plant tissue cultures.Abbreviations AMS ammonium mineral salts medium - PPFM pink-pigmented facultative methylotrophic bacteria  相似文献   
45.
Homoionic Na-, Ca-, and Al-clays were prepared from the <2 m fractions of Georgia kaolinite and Wyoming bentonite and mixed with sand to give artificial soils with 5, and 25% clay. The artificial soils were inoculated with microbes from a natural soil before incubation. Unlabelled and uniformly13C-labelled (99.9% atom) glucose were incorporated into the artificial soils to study the effects of clay types, exchangeable cations and clay contents on the mineralization of glucose-carbon and glucose-derived organic materials. Chemical transformation of glucose-carbon upon incorporation into microbial products and metabolites, was followed using solid-state13C CP/MAS NMR spectroscopy.There was a significant influence of exchangeable cations on the mineralization of glucose-carbon over a period of 33 days. At 25% clay content, mineralization of glucose-carbon was highest in Ca-soils and lowest in Al-soils. The influence of exchangeable cations on mineralization of glucose-carbon was more pronounced in soils with bentonite clay than those with kaolinite clay. Statistical analysis of data showed no overall effect of clay type on mineralization of glucose-carbon. However, the interactions of clay type with clay content and clay type with clay content and exchangeable cations were highly significant. At 25% clay content, the mineralization of glucose-carbon was significantly lower in Na- and Al-soils with Wyoming bentonite compared with Na- and Al-soils with Georgia kaolinite. For Ca-soils this difference was not significant. Due to the increased osmotic tension induced by the added glucose, mineralization of glucose-carbon was slower in soils with 5% clay than soils with 25% clay.Despite the differences in the chemical and physical characteristics of soils with Ca-, Na- and Al-clays, the chemical composition of organic materials synthesised in these soils were similar in nature. Assuming CP/MAS is quantitative, incorporation of uniformly13C-labelled glucose (99.9% atom) in these soils resulted in distribution of carbon in alkyl (24–25%), O-alkyl (56–63%), carbonyl (11–15%) and small amounts of aromatic and olefinic carbon (2–4%). However, as decomposition proceeded, the chemistry of synthesised material showed some changes with time. In the Ca- and Na-soils, the proportions of alkyl and carbonyl carbon decreased and that of O-alkyl carbon increased with time of incubation. However, the opposite trend was found for the Al-soil.Proton-spin relaxation editing (PSRE) subspectra clearly showed heterogeneity within the microbial products. Subspectra of the slowly-relaxing (long T1(H)) domains were dominated by alkyl carbon in long- and short-chain structures. The signals due to N-alkyl (55 ppm) and carbonyl carbon were also strong in these subspectra. These subspectra were very similar to those obtained for microbial and fungal materials and were probably microbial tissues attached to clay surfaces by polysaccharide extracellular mucilage. Subspectra of fast-relaxing (short T1(H)) domains comprised mostly O-alkyl and carbonyl carbon and were probably microbial metabolites released as neutral and acidic sugars into the extracellular environment, and strongly sorbed by clay surfaces.  相似文献   
46.
We studied the effects of mycorrhizal pitch pine (Pinus rigida) roots on litter decomposition, microbial biomass, nematode abundance and inorganic nutrients in the E horizon material of a spodosolic soil, using field microcosms created in a regenerating pitch pine stand in the New Jersey Pinelands. Pine roots stimulated litter decomposition by 18.7% by the end of the 29 month study. Both mass loss and N and P release from the litter were always higher in the presence of roots than in their absence. Nutrient concentrations in decomposing litter were similar, however, in the presence and absence of roots, which suggests that the roots present in the with-root treatment did not withdraw nutrients directly from the litter. The soil was slightly drier in the presence of roots, but there was no discernible effect on soil microbial biomass. The effects of roots on soil extractable inorganic nutrients were inconsistent. Roots, however, were consistently associated with higher numbers of soil nematodes. These results suggest that, in soils with low total C and N contents, roots stimulate greater activity of the soil biota, which contribute, in turn, to faster litter decomposition and nutrient release.Contribution No. 95-22 from the Institute of Marine and Coastal Sciences.Contribution No. 95-22 from the Institute of Marine and Coastal Sciences.  相似文献   
47.
Different submodels within complex model packages on N regimes-for plant N-uptake, net N-mineralization, nitrate leaching and microbial N immobilization-are critically reviewed mainly with regard to their prediction ability on the basis of three comparative papers. Only for some of the processes adequate statistical evaluation of the models was possible. Compared to the other statistically evaluable process, nitrate leaching, modeling of plant N-uptake yields the better results. Most models for mineralization use arbitrary approaches rather than empirical ones. Although only approximate estimates of N mineralisation were at hand, the models generally behave expectedly poor. Only one model-DAISY-out of 16 involved in the comparison uses an explicit microbial biomass sub-model including microbial growth, decline and maintenance terms. So DAISY is the only model coupling C and N cycles. But what is true for an individual model describing the C and N transformation of a lab incubation experiment seems to be valid for most of the complex simulation work on the C and N regimes: this model was said to be overparameterized with respect to the available data.  相似文献   
48.
Thirteen F2 families of faba bean (Vicia faba L.), descended from plants trisomic for chromosomes 3, 4, 5 and 6, have been analyzed for morphological, isozyme and RAPD markers. This allowed the establishment of linkage relationships among these markers as well as the assignment of some markers and/or linkage groups to their respective chromosomes. The linkage analysis of partially overlapping sets of informative genetic markers for the data pooled from 13 F2 families has revealed 48 linkage groups, six of which have been precisely assigned to specific chromosomes. A statistical procedure to analyze the data of joint segregation analysis in families derived from trisomic plants has been developed.  相似文献   
49.
In this review we examine the fascinating array of microbial and enzymatic transformations of ferulic acid. Ferulic acid is an extremely abundant, preformed phenolic aromatic chemical found widely in nature. Ferulic acid is viewed as a commodity scale, renewable chemical feedstock for biocatalytic conversion to other useful aromatic chemicals. Most attention is focused on bioconversions of ferulic acid itself. Topics covered include cinnamoyl side-chain cleavage; nonoxidative decarboxylation; mechanistic details of styrene formation; purification and characterization of ferulic acid decarboxylase; conversion of ferulic acid to vanillin;O-demethylation; and reduction reactions. Biotransformations of vinylgualacol are discussed, and selected biotransformations of vanillic acid including oxidative and nonoxidative decarboxylation are surveyed. Finally, enzymatic oxidative dimerization and polymerization reactions are reviewed.  相似文献   
50.
Summary This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. Controlled field experiments with sewage sludges exist in the UK, Sweden, Germany and the USA and the data presented here are from these long-term field experiments only. Microbial activity and populations of cyanobacteria,Rhizobium leguminosarum bv.trifolii, mycorrhizae and the total microbial biomass have been adversely affected by metal concentrations which, in some cases, are below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N2-fixation by free living heterotrophic bacteria was found to be inhibited at soil metal concentrations of (mg kg–1): 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. N2-fixation by free-living cyanobacteria was reduced by 50% at metal concentrations of (mg kg–1): 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb.Rhizobium leguminosarum bv.trifolii numbers decreased by several orders of magnitude at soil metal concentrations of (mg kg–1): 130–200 Zn, 27–48 Cu, 11–15 Ni, and 0.8–1.0 Cd. Soil texture and pH were found to influence the concentrations at which toxicity occurred to both microorganisms and plants. Higher pH, and increased contents of clay and organic carbon reduced metal toxicity considerably. The evidence suggests that adverse effects on soil microbial parameters were generally found at surpringly modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号