首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3619篇
  免费   484篇
  国内免费   1312篇
  5415篇
  2024年   34篇
  2023年   197篇
  2022年   229篇
  2021年   259篇
  2020年   253篇
  2019年   268篇
  2018年   257篇
  2017年   235篇
  2016年   228篇
  2015年   198篇
  2014年   235篇
  2013年   389篇
  2012年   198篇
  2011年   223篇
  2010年   193篇
  2009年   219篇
  2008年   197篇
  2007年   220篇
  2006年   208篇
  2005年   149篇
  2004年   130篇
  2003年   110篇
  2002年   89篇
  2001年   90篇
  2000年   81篇
  1999年   64篇
  1998年   44篇
  1997年   53篇
  1996年   52篇
  1995年   49篇
  1994年   41篇
  1993年   39篇
  1992年   27篇
  1991年   32篇
  1990年   23篇
  1989年   18篇
  1988年   16篇
  1987年   7篇
  1986年   9篇
  1985年   10篇
  1984年   10篇
  1983年   5篇
  1982年   11篇
  1981年   4篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1958年   1篇
排序方式: 共有5415条查询结果,搜索用时 0 毫秒
91.
The elucidation of the mechanisms by which diverse species survive and interact in drinking water (DW) biofilm communities may allow the identification of new biofilm control strategies. The purpose of the present study was to investigate the effects of metabolite molecules produced by bacteria isolated from DW on biofilm formation. Six opportunistic bacteria, viz. Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp. isolated from a drinking water distribution systems (DWDS) were used to form single and multispecies biofilms in the presence and absence of crude cell-free supernatants produced by the partner bacteria. Biofilms were characterized in terms of mass and metabolic activity. Additionally, several physiological aspects regulating interspecies interactions (sessile growth rates, antimicrobial activity of cell-free supernatants, and production of iron chelators) were studied to identify bacterial species with biocontrol potential in DWDS. Biofilms of Methylobacterium sp. had the highest growth rate and M. mucogenicum biofilms the lowest. Only B. cepacia was able to produce extracellular iron-chelating molecules. A. calcoaceticus, B. cepacia, Methylobacterium sp. and M. mucogenicum biofilms were strongly inhibited by crude cell-free supernatants from the other bacteria. The crude cell-free supernatants of M. mucogenicum and S. capsulata demonstrated a high potential for inhibiting the growth of counterpart biofilms. Multispecies biofilm formation was strongly inhibited in the absence of A. calcoaceticus. Only crude cell-free supernatants produced by B. cepacia and A. calcoaceticus had no inhibitory effects on multispecies biofilm formation, while metabolite molecules of M. mucogenicum showed the most significant biocontrol potential.  相似文献   
92.
ABSTRACT:?

The growth and metabolic capabilities of microorganisms depend on their interactions with the culture medium. Many media contain two or more key substrates, and an organism may have different preferences for the components. Microorganisms adjust their preferences according to the prevailing conditions so as to favor their own survival. Cybernetic modeling describes this evolutionary strategy by defining a goal that an organism tries to attain optimally at all times. The goal is often, but not always, maximization of growth, and it may require the cells to manipulate their metabolic processes in response to changing environmental conditions.

The cybernetic approach overcomes some of the limitations of metabolic control analysis (MCA), but it does not substitute MCA. Here we review the development of the cybernetic modeling of microbial metabolism, how it may be combined with MCA, and what improvements are needed to make it a viable technique for industrial fermentation processes.

IMTECH communication no.001/2001  相似文献   
93.
Vascular plants have lignified tissues that transport water, minerals, and photosynthetic products throughout the plant. They are the dominant primary producers in terrestrial ecosystems and capture significant quantities of atmospheric carbon dioxide (CO2) through photosynthesis. Some of the fixed CO2 is respired by the plant directly, with additional CO2 lost from rhizodeposits metabolized by root-associated soil microorganisms. Microbially-mediated mineralization of organic nitrogen (N) from plant byproducts (rhizodeposits, dead plant residues) followed by nitrification generates another greenhouse gas, nitrous oxide (N2O). In anaerobic soils, reduction of nitrate by microbial denitrifiers also produces N2O. The plant-microbial interactions that result in CO2 and N2O emissions from soil could be affected by genetic modification. Down-regulation of genes controlling lignin biosynthesis to achieve lower lignin concentration or a lower guaiacyl:syringyl (G:S) ratio in above-ground biomass is anticipated to produce forage crops with greater digestibility, improve short rotation woody crops for the wood-pulping industry and create second generation biofuel crops with low ligno-cellulosic content, but unharvested residues from such crops are expected to decompose quickly, potentially increasing CO2 and N2O emissions from soil. The objective of this review are the following: 1) to describe how plants influence CO2 and N2O emissions from soil during their life cycle; 2) to explain how plant residue chemistry affects its mineralization, contributing to CO2 and N2O emissions from soil; and 3) to show how modification of plant lignin biosynthesis could influence CO2 and N2O emissions from soil, based on experimental data from genetically modified cell wall mutants of Arabidopsis thaliana. Conceptual models of plants with modified lignin biosynthesis show how changes in phenology, morphology and biomass production alter the allocation of photosynthetic products and carbon (C) losses through rhizodeposition and respiration during their life cycle, and the chemical composition of plant residues. Feedbacks on the soil environment (mineral N concentration, soil moisture, microbial communities, aggregation) affecting CO2 and N2O emissions are described. Down-regulation of the Cinnamoyl CoA Reductase 1 (CCR1) gene is an excellent target for highly digestable forages and biofuel crops, but A. thaliana with this mutation has lower plant biomass and fertility, prolonged vegetative growth and plant residues that are more susceptible to biodegradation, leading to greater CO2 and N2O emissions from soil in the short term. The challenge in future crop breeding efforts will be to select tissue-specific genes for lignin biosynthesis that meet commercial demands without compromising soil CO2 and N2O emission goals.  相似文献   
94.
In anoxic environments, methane oxidation is conducted in a syntrophic process between methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB). Microbial mats consisting of ANME, SRB and other microorganisms form methane seep-related carbonate buildups in the anoxic bottom waters of the Black Sea Crimean shelf. To shed light on the localization of the biochemical processes at the level of single cells in the Black Sea microbial mats, we applied antibody-based markers for key enzymes of the relevant metabolic pathways. The dissimilatory adenosine-5′-phosphosulfate (APS) reductase, methyl-coenzyme M reductase (MCR) and methanol dehydrogenase (MDH) were selected to localize sulfate respiration, reverse methanogenesis and aerobic methane oxidation, respectively. The key enzymes could be localized by double immunofluorescence and immunocytochemistry at light- and electron microscopic levels. In this study we show that sulfate reduction is conducted synchronized and in direct proximity to reverse methanogenesis of ANME archaea. Microcolonies in interspaces between ANME/SRB express methanol dehydrogenase, which is indicative for oxidation of C1 compounds by methylotrophic or methanotrophic bacteria. Thus, in addition to syntrophic AOM, oxygen-dependent processes are also conducted by a small proportion of the microbial population.  相似文献   
95.
Abstract

Assessing the amount of released K from minerals in bacterial liquid culture is the main process for screening and isolation of efficient potassium releasing bacteria (KRB). This study was aimed to determine the amount of released K in solution phase or supernatant (SK) as well as microbial biomass K (MBK). Therefore, 20 different bacterial isolates belonging to the 10 bacterial genera (Beijerinckia, Klebsiella, Azotobacter, Pseudomonas, Agrobacterium, Rhizobium, Sphingomonas, Citrobacter, Microbacterium, and Achromobacter) were individually used to inoculate Aleksandrov medium in presence of biotite or muscovite. Our results from in-vitro experiments revealed that the MBK (K in pellet) is more important than in SK. Although some genera such as Azotobacter and Citrobacter released more SK (16?mg/l from biotite and 12.77?mg/l from muscovite, respectively), the Klebsiella isolates with the highest MBK could release an average of 90?mg/l total K. This study indicated that the assimilated K in microbial cells is the main part of K dissolution from minerals. Due to the fast turnover of nutrients in bacterial biomass, it can be concluded that both SK and MBK could be available for plants. It seems that the finding of this research should be considered in the isolation of KRB.

Highlights

  • This study reports, assessment of soluble and biomass K in the culture medium is a reliable tool for estimation of K releasing efficiency of bacteria

  • Our results from in vitro experiments revealed that the assimilated K in microbial cells is the main part of K dissolved from minerals.

  • Although some genera such as Azotobacter released more K in solution phase, the Klebsiella isolates with the highest biomass K could release more total K

  相似文献   
96.
An incubation experiment was conducted to estimate redox buffer capacity of “water-rock-microbe” interaction systems in sedimentary rocks. The water chemistry, microbial growth and community structure were analyzed during the incubations. The dissolved oxygen (DO) concentrations and oxidation-reduction potential (ORP) values decreased notably in the presence of active microorganisms, whereas abiotic reactions did not lead to reducing conditions during incubation. The change in microbial community structure suggests that nitrate-reducing and sulfate-reducing bacteria played an important role in reduction of water by using lignite-derived organic matter. These results show that the microbial role is extremely important for the redox buffering capacity in sedimentary rock environments.  相似文献   
97.
The Northern Baffin Bay between Greenland and Canada is a remote Arctic area restricted in primary production by seasonal ice cover, with presumably low sedimentation rates, carbon content and microbial activities in its sediments. Our aim was to study the so far unknown subseafloor geochemistry and microbial populations driving seafloor ecosystems. Shelf sediments had the highest organic carbon content, numbers of Bacteria and Archaea, and microcosms inoculated from Shelf sediments showed highest sulfate reduction and methane production rates. Sediments in the central deep area and on the southern slope contained less organic carbon and overall lower microbial numbers. Similar 16S rRNA gene copy numbers of Archaea and Bacteria were found for the majority of the sites investigated. Sulfate in pore water correlated with dsrA copy numbers of sulfate-reducing prokaryotes and differed between sites. No methane was found as free gas in the sediments, and mcrA copy numbers of methanogenic Archaea were low. Methanogenic and sulfate-reducing cultures were enriched on a variety of substrates including hydrocarbons. In summary, the Greenlandic shelf sediments contain vital microbial communities adapted to their specific environmental conditions.  相似文献   
98.
DNA fingerprinting methods provide a means to rapidly compare microbial assemblages from environmental samples without the need to first cultivate species in the laboratory. The profiles generated by these techniques are able to identify statistically significant temporal and spatial patterns, correlations to environmental gradients, and biological variability to estimate the number of replicates for clone libraries or next generation sequencing (NGS) surveys. Here we describe an improved DNA fingerprinting technique that combines terminal restriction fragment length polymorphisms (TRFLP) and single stranded conformation polymorphisms (SSCP) so that both can be used to profile a sample simultaneously rather than requiring two sequential steps as in traditional two-dimensional (2-D) gel electrophoresis. For the purpose of profiling Archaeal 16S rRNA genes from soil, the dynamic range of this combined 1-D TRFLP-SSCP approach was superior to TRFLP and SSCP. 1-D TRFLP-SSCP was able to distinguish broad taxonomic clades with genetic distances greater than 10%, such as Euryarchaeota and the Thaumarchaeal clades g_Ca. Nitrososphaera (formerly 1.1b) and o_NRP-J (formerly 1.1c) better than SSCP. In addition, 1-D TRFLP-SSCP was able to simultaneously distinguish closely related clades within a genus such as s_SCA1145 and s_SCA1170 better than TRFLP. We also tested the utility of 1-D TRFLP-SSCP fingerprinting of environmental assemblages by comparing this method to the generation of a 16S rRNA clone library of soil Archaea from a restored Tallgrass prairie. This study shows 1-D TRFLP-SSCP fingerprinting provides a rapid and phylogenetically informative screen of Archaeal 16S rRNA genes in soil samples.  相似文献   
99.
Mathematical models are useful tools for studying and exploring biological conversion processes as well as microbial competition in biological treatment processes. A single‐species biofilm model was used to describe biofilm reactor operation at three different hydraulic retention times (HRT). The single‐species biofilm model was calibrated with sparse experimental data using the Monte Carlo filtering method. This calibrated single‐species biofilm model was then extended to a multi‐species model considering 10 different heterotrophic bacteria. The aim was to study microbial diversity in bulk phase biomass and biofilm, as well as the competition between suspended and attached biomass. At steady state and independently of the HRT, Monte Carlo simulations resulted only in one unique dominating bacterial species for suspended and attached biomass. The dominating bacterial species was determined by the highest specific substrate affinity (ratio of µ/KS). At a short HRT of 20 min, the structure of the microbial community in the bulk liquid was determined by biomass detached from the biofilm. At a long HRT of 8 h, both biofilm detachment and microbial growth in the bulk liquid influenced the microbial community distribution. Biotechnol. Bioeng. 2013; 110: 1323–1332. © 2012 Wiley Periodicals, Inc.  相似文献   
100.
We live on a microbial planet. Microorganisms dominate in terms of numbers of lineages, numbers of organisms, biomass and evolutionary innovations. Yet much remains to be learned about our microbial neighbours. We have gotten to know a few species that have been transformed into ‘laboratory rats’ (i.e. model organisms), but even here our understanding of the natural history of these lineages remains inadequate as there are few data from populations living in natural habitats. Zufall et al. (2013) move beyond this trend by providing insights into the natural history of Tetrahymena thermophila, a ciliate that has been used in many studies of cellular and molecular biology. Characterization of T. thermophila sampled from numerous ponds across this ciliate's range in Eastern North America reveals the following: (i) considerable differentiation among isolates, with the greatest diversity among lineages in New England, and (ii) a relatively small effective population size for this model ciliate. Such population data are fundamental for inferences about the origins of the numerous remarkable features of T. thermophila.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号