首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   609篇
  免费   67篇
  国内免费   45篇
  2024年   2篇
  2023年   10篇
  2022年   17篇
  2021年   26篇
  2020年   30篇
  2019年   41篇
  2018年   33篇
  2017年   26篇
  2016年   29篇
  2015年   39篇
  2014年   31篇
  2013年   56篇
  2012年   29篇
  2011年   28篇
  2010年   15篇
  2009年   15篇
  2008年   26篇
  2007年   9篇
  2006年   10篇
  2005年   27篇
  2004年   16篇
  2003年   24篇
  2002年   15篇
  2001年   23篇
  2000年   21篇
  1999年   10篇
  1998年   13篇
  1997年   10篇
  1996年   10篇
  1995年   15篇
  1994年   19篇
  1993年   12篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1987年   2篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1974年   1篇
排序方式: 共有721条查询结果,搜索用时 671 毫秒
101.
Different taxa of chlorophycean, trebouxiophycean and xanthophycean soil microalgae and of cyanobacteria have been tested for the release of substances that inhibit the growth of either Echerichia coli (Migula) Castellani et Chalmersor Micrococcus luteus (Schroeter) Cohn. Experiments suggest two types of antibacterial effects: one type is constitutive; that is, the antibacterial activity is always present in the algal culture medium, as is the case with the Chroococcus turgidus (medium that inhibits the growth of Escherichia coli). The other type is induced; that is, the antibacterial activity occurs only when algae are in contact with bacteria. This is the case when growth of Micrococcus luteus is inhibited in co‐culture with Chroococcus turgidus (Kützing) Nägeli or with Xanthonema debile (Vischer) Silva and when growth of Escherichia coll is inhibited in co‐culture with Tetracystis sp. As well as inhibition, promotion of bacterial growth was observed. This was probably an unspecific effect resulting from soluble organic and inorganic substances, such as carbohydrates, that are generally present in algal cultures.  相似文献   
102.
103.
104.
Microalgae are a promising feedstock for biofuel production. Lipid content in microalgae could be enhanced under nutrient depletion. This work investigated the effect of the nutrient on lipid accumulation in Ankistrodesmus sp. culture. Batch cultures were carried out using fresh BG11 medium, and after the harvest, the medium was reused for the next culture; this method was repeated two times. The maximum lipid productivity of 29.75 mg L?1 day?1 was obtained from the culture with the second reuse medium. In continuous cultures, Ankistrodesmus sp. was cultured in both fresh and modified BG11 mediums. The modified BG11 medium was adjusted to resemble the content of the first reuse medium. As a comparison between batch and continuous cultures, it was proven that the productivity in the continuous culture was better than in the batch, where the achievable maximum biomass and lipid were 188.30 and 38.32 mg L?1 day?1. The maximum lipid content of 34.22% was obtained from the continuous culture at a dilution rate of 0.08 day?1, whereas the maximum saturated and unsaturated fatty acid productivities of 79.96 and 104.54 mg L?1 day?1 were obtained at a dilution rate of 0.16 day?1.  相似文献   
105.
The dinoflagellate genus Coolia, which contains potentially toxic species, is an important component of epiphytic assemblages in marine ecosystems. The morphology of C. malayensis has been illustrated from strains isolated in Asia and Oceania. In this study, strains of C. malayensis isolated from the Caribbean Sea in Puerto Rico, and for the first time from the South Atlantic Ocean in Brazil, were investigated by light, epifluorescence and scanning electron microscopies. No significant morphological differences between these new strains and other geographically distant strains of C. malayensis were observed. In the LSU rDNA phylogeny, the C. malayensis sequences from Brazil and Puerto Rico branched within the clade of strains from Oceania and Asia. The recently described species C. santacroce branched as a sister group of C. monotis, and C. palmyrensis was basal to the combined group of C. monotis/C. malayensis/C. santacroce. A tentative undescribed species from Florida and New Zealand branched as a sister group of C. malayensis. Our results confirm that C. malayensis showed a cosmopolitan distribution in tropical to subtropical waters, while the type species C. monotis remains endemic for the Mediterranean Sea and the temperate North Atlantic.  相似文献   
106.
Screening of marine microalgae for bioremediation of cadmium-polluted seawater   总被引:11,自引:0,他引:11  
Twenty four strains out of 191 marine microalgal strains exhibited cadmium (Cd) resistance. They were tested for their Cd removal ability in growth media containing 50 μM Cd. Six strains out of 19 green algae and one out of five cyanobacteria removed more than 10% of total Cd from the medium. The marine green alga Chlorella sp. NKG16014 showed the highest removal of Cd 48.7% of total. Cd removal by NKG16014 was further quantitatively evaluated by measuring the amount of cell adsorption and intracellular accumulation. After 12 days incubation, 67% of the removed Cd was accumulated intracellularly and 25% of the Cd removed was adsorbed on the algal cell surface. The maximum Cd adsorption (qmax) was estimated to be 37.0 mg Cd (g dry cells)−1 using the Langmuir sorption model. The Cd removal by freeze-dried NKG16014 cells was also determined. Cd was more quickly adsorbed by dried cells than that by living cells, with a qmax of 91.0 mg Cd (g dry cells)−1.  相似文献   
107.
10种海洋微藻总脂、中性脂和极性脂的脂肪酸组成   总被引:15,自引:1,他引:14  
研究了10种海洋微藻的总脂、中性脂和极性脂的脂肪酸组成特征。海洋微藻的脂肪含量均在15%以上。极性脂一般为海洋微藻的主要脂类,是长链多元不饱和脂肪酸的主要提供者。中性脂含短链脂肪酸较多,为主要的储存脂类。绿藻纲可以将高含量的16:4(n-3)和18:3(n-3)作为化学分类的标记脂肪酸,小球藻和微绿球藻有丰富的20:5(n-3),与绿藻纲显著不同,可能属于大眼藻纲。绿枝藻纲的脂肪酸组成与绿藻纲类似,绿胞藻纲以16:0、18:4(n-3)和20:5(n-3)为主要脂肪酸。脂肪酸组成可用于海洋微藻的分类学研究,并能指导利用海洋微藻生产高度不饱和脂肪酸。  相似文献   
108.
The effects of salinity on cell growth and docosahexaenoic acid (DHA) content of three marine microalgal strains, Crythecodinium cohnii ATCC 30556, C. cohnii ATCC 50051 and C. cohnii RJH were investigated. The lag phases of the three strains increased with increasing salinity in Porphyridium medium. The specific growth rate of C. cohnii ATCC 30556 was the highest at 9 g L−1 NaCl while the other two strains had their highest specific growth rates at 5 g L−1 NaCl. The highest cell dry weight concentrations of 2.51 g L−1 and 1.56 g L−1 were achieved at 9 g L−1 NaCl for C. cohnii ATCC 30556 and ATCC 50051, respectively, while the highest dry weight concentration of 2.49 g L−1 was achieved at 5 g L−1 NaCl for C. cohnii RJH. The highest cell growth yield coefficient on glucose was 0.5 g g−1 for both C. cohnii ATCC 30556 and C. cohnii RJH and 0.45 g g−1 for C. cohnii ATCC 50051. All three strains responded to the change of salinity by modifying their cellular fatty acid compositions. At 9 g L−1 NaCl, C. cohnii ATCC 30556 had the highest total fatty acid content and DHA (C22:6) proportion. In contrast, C. cohnii ATCC 50051 and C. cohnii RJH had the highest DHA content at 5 g L−1 NaCl. C. cohnii ATCC 30556 and ATCC 50051 had the highest DHA yield (131.55 and 68.24 mg L−1 respectively) at 9 g L−1 NaCl while C. cohnii RJH had the highest DHA yield (128.83 mg L−1) at 5 g L−1 NaCl. Received 27 May 1999/ Accepted in revised form 27 August 1999  相似文献   
109.
The present work characterizes a submerged aerated hollow fiber polyvinylidene fluorid (PVDF) membrane (0.03 μm) device (Harvester) designed for the ultrafiltration (UF) of microalgae suspensions. Commercial baker''s yeast served as model suspension to investigate the influence of the aeration rate of the hollow fibers on the critical flux (CF, J c) for different cell concentrations. An optimal aeration rate of 1.25 vvm was determined. Moreover, the CF was evaluated using two different Chlorella cultures (axenic and non‐axenic) of various biomass densities (0.8–17.5 g DW/L). Comparably high CFs of 15.57 and 10.08 L/m/2/h were measured for microalgae concentrations of 4.8 and 10.0 g DW/L, respectively, applying very strict CF criteria. Furthermore, the J c‐values correlated (negative) linearly with the biomass concentration (0.8–10.0 g DW/L). Concentration factors between 2.8 and 12.4 and volumetric reduction factors varying from 3.5 to 11.5 could be achieved in short‐term filtration, whereat a stable filtration handling biomass concentrations up to 40.0 g DW/L was feasible. Measures for fouling control (aeration of membrane fibers, periodic backflushing) have thus been proven to be successful. Estimations on energy consumption revealed very low energy demand of 17.97 kJ/m3 treated microalgae feed suspension (4.99 × 10−3 kWh/m3) and 37.83 kJ/kg treated biomass (1.05 × 10−2 kWh/kg), respectively, for an up‐concentration from 2 to 40 g DW/L of a microalgae suspension.  相似文献   
110.
Summary Microalgae are a highly diverse group of unicellular organisms comprising the eukaryotic protists and the prokaryotic cyanobacteria or blue-green algae. The microalgae have a unique environmental status; being virtually ubiquitous in euphotic aquatic niches, they can occupy extreme habitats ranging from tropical coral reefs to the polar regions, and they contribute to half of the globe’s photosynthetic activity. Furthermore, they form the basis of the food chain for more than 70% of the world’s biomass. Microalgae are a valuable environmental and biotechnological resource, and the aim of this review is to explore the use of in vitro technologies in the conservation and sustainable exploitation of this remarkable group of organisms. The first part of the review evaluates the importance of in vitro methods in the maintenance and conservation of microalgae and describes the central role of culture collections in applied algal research. The second part explores the application of microalgal in vitro technologies, particularly in the context of the aquaculture and biotechnology industries. Emphasis is placed upon the exploitation of economically important algal products including aquaculture feed, biomass production for the health care sector, green fertilizers, pigments, vitamins, antioxidants, and antimicrobial agents. The contribution that microalgae can make to environmental research is also appraised; for example, they have an important role as indicator organisms in environmental impact assessments. Similarly, designated culture collection strains of microalgae are used for ecotoxicity testing. Throughout the review, emphasis is placed on the application of in vitro techniques for the continued advancement of microalgal research. The paper concludes by assessing future perspectives for the novel application of microalgae and their products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号